
poppy Documentation
Release 0.9.0

Marshall Perrin

Nov 25, 2019

Contents

I Summary 3

II Contents 7

III Getting Help 179

i

ii

poppy Documentation, Release 0.9.0

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It
implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation,
particularly in the context of astronomical telescopes. POPPY was developed as part of a simulation package for
JWST, but is broadly applicable to many kinds of imaging simulations.

Contents 1

http://www.stsci.edu/jwst

poppy Documentation, Release 0.9.0

2 Contents

Part I

Summary

3

poppy Documentation, Release 0.9.0

What this software does:

• Allows users to define an optical system consisting of multiple planes, such as pupils and images.

• Provides flexible and extensible optical element classes, including a wide variety of stops, masks, lenses and
more.

• Propagates wavefronts between planes using either the Fraunhofer or Fresnel approximations of scalar electro-
magnetic theory.

• Computes monochromatic and polychromatic point spread functions through those optics.

• Provides an extensible framework for defining models of optical instruments, including selection of broad- and
narrow-band filters, selectable optical components such as pupil stops, models of optical aberrations defined by
Zernike polynomials, etc.

What this software does not do:

• Full Rayleigh-Sommerfeld electromagnetic propagation.

• Vector electromagnetic field propagation such as would be needed for modeling polarization effects.

• Modelling of any kind of detector noise or imperfections.

Quickstart IPython Notebook

This documentation is complemented by an IPython Notebook quickstart tutorial.

Downloading and running that notebook is a great way to get started using POPPY. The documentation following here
provides greater details on the algorithms and API.

What’s New in the latest version?

5

http://nbviewer.ipython.org/github/spacetelescope/poppy/blob/master/notebooks/POPPY_tutorial.ipynb

poppy Documentation, Release 0.9.0

6

Part II

Contents

7

CHAPTER 1

Installation

POPPY may be installed from PyPI in the usual manner for Python packages:

% pip install poppy --upgrade

The source code is hosted in this repository on GitHub. It is possible to directly install the latest development version
from git:

% git clone https://github.com/spacetelescope/poppy.git
% cd poppy
% pip install -e .

Note: Users at STScI may also access POPPY through the standard SSB software distributions.

1.1 Requirements

• Python 3.5, or more recent. Earlier versions of Python are no longer supported.

• The standard Python scientific stack: numpy, scipy, matplotlib

• POPPY relies upon the astropy community-developed core library for astronomy. astropy, version 1.3 or more
recent, is needed.

The following are optional. The first, pysynphot, is recommended for most users. The other optional installs are only
worth adding for speed improvements if you are spending substantial time running calculations.

• pysynphot enables the simulation of PSFs with proper spectral response to realistic source spectra. Without this,
PSF fidelity is reduced. See below for installation instructions for pysynphot.

• psutil enables slightly better automatic selection of numbers of processes for multiprocess calculations.

• pyFFTW. The FFTW library can speed up the FFTs used in multi-plane optical simulations such as corona-
graphiy or slit spectroscopy. Since direct imaging simulations use a discrete matrix FFT instead, direct imaging

9

https://github.com/spacetelescope/poppy
http://ssb.stsci.edu/ssb_software.shtml
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy
http://www.astropy.org
http://pysynphot.readthedocs.org/en/latest/
https://pypi.python.org/pypi/psutil
https://pypi.python.org/pypi/pyFFTW

poppy Documentation, Release 0.9.0

simulation speed is unchanged. pyFFTW is recommended if you expect to perform many coronagraphic calcu-
lations, particularly for MIRI. (Note: POPPY previously made use of the PyFFTW3 package, which is different
from pyFFTW. The latter is more actively maintained and supported today, hence the switch. Note also that
some users have reported intermittent stability issues with pyFFTW for reasons that are not yet clear.) At this
time we recommend most users should skip installing pyFFTW while getting started with poppy.

• Anaconda accelerate and numexpr. These optionally can provide improved performance particularly in the
Fresnel code.

1.2 Installing or updating pysynphot

Pysynphot is an optional dependency, but is highly recommended. See the pysynphot installation docs here to install
pysynphot and (at least some of) its CDBS data files.

The minimum needed to have stellar spectral models available for use when creating PSFs is pysynphot itself plus just
one of the CDBS data files: the Castelli & Kurucz stellar atlas, file synphot3.tar.gz (18 MB). Feel free to ignore the
rest of the synphot CDBS files unless you know you want a larger set of input spectra or need the reference files for
other purposes.

1.3 Testing your installation of poppy

Poppy includes a suite of unit tests that exercise its functionality and verify outputs match expectations. You can
optionally run this test suite to verify that your installation is working properly:

>>> import poppy
>>> poppy.test()
============================ test session starts =====================================
Python 3.6.5, pytest-3.6.1, py-1.5.3, pluggy-0.6.0
Running tests with Astropy version 3.0.3.
... [etc] ...
================= 126 passed, 1 skipped, 1 xfailed in 524.68 seconds ==================

Some tests may be automatically skipped depending on whether certain optional packaged are installed, and other tests
in development may be marked “expected to fail” (xfail), but as long as no tests actually fail then your installation is
working as expected.

10 Chapter 1. Installation

https://docs.anaconda.com/accelerate/
http://numexpr.readthedocs.io/en/latest/user_guide.html
http://pysynphot.readthedocs.org/en/latest/
http://pysynphot.readthedocs.org/en/latest/#installation-and-setup
ftp://ftp.stsci.edu/cdbs/tarfiles/synphot3.tar.gz

CHAPTER 2

Release Notes

For a list of contributors, see About POPPY .

2.1 0.9.0

2019 Nov 25

New Functionality:

• Chaining together multiple propagations calculations: Multiple OpticalSystem instances can now be
chained together into a CompoundOpticalSystem. This includes mixed propagations that are partially Fres-
nel and partially Fraunhofer; Wavefront objects will be cast between types as needed. (#290 by @mperrin)

• Gray pixel subsampling of apertures: Implemented “gray pixel” sampling for circular apertures and stops,
providing more precise models of aperture edges. For circular apertures this is done using a fast analytic ge-
ometry implementation adapted from open-source IDL code originally by Marc Buie. (#325 by @mperrin,
using Python code contributed by @astrofitz). For subpixel / gray pixel sampling of other optics in general, a
new function fixed_sampling_optic takes any AnalyticOpticalElement and returns an equivalent ArrayOp-
ticalElement with fixed sampling. This is useful for instance for taking a computationally-slow optic such as
MultiHexagonAperture and saving a discretized version for future faster use. (#307 by @mperrin)

• Modeling tilted optics: New feature to model geometric projection (cosine scaling) of inclined optics, by setting
an inclination_x or inclination_y attribute to the tilt angle in degrees. For instance inclination_x=30
will tilt an optic by 30 degrees around the X axis, and thus compress its apparent size in the Y axis by cosine(30
deg). Note, this transformation only applies the cosine scaling to the optic’s appearance, and does not introduce
wavefront for tilt. (#329 by @mperrin)

• Many improvements to the Continuous Deformable Mirror class:

– Enhance model of DM actuator influence functions for more precise subpixel spacing of DM actuators,
rather than pokes separated by integer pixel spacing. This applies to the ‘convolution by influence function’
method for modeling DMs (#329 by @mperrin)

– Support distinct radii for the active controllable mirror size and the reflective mirror size (#293 by @mper-
rin)

11

https://github.com/spacetelescope/poppy/pull/290
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/325
https://github.com/mperrin
https://github.com/astrofitz
https://github.com/spacetelescope/poppy/pull/307
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/329
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/329
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/293
https://github.com/mperrin
https://github.com/mperrin

poppy Documentation, Release 0.9.0

– ContinuousDeformableMirror now supports shift_x and shift_y to translate / decenter the DM, consis-
tent with other optical element classes. (#307 by @mperrin)

– ContinuousDeformableMirror now also supports flip_x and flip_y attributes to flip its orientation along
one or both axes, as well as the new inclination_x and inclination_y attributes for geometric projec-
tion.

• Improved models of certain kinds of wavefront error:

– New class StatisticalPSDWFE that models random wavefront errors described by a power spectral den-
sity, as is commonly used to specify and measure typical polishing residuals in optics. (#315 by @ivalag-
inja; #317 by @mperrin)

– FITSOpticalElement can now support wavelength-independent phase maps defined in radians, for in-
stance for modeling Pancharatnam-Berry phase as used in certain vector coronagraph masks. (#306 by
@joseph-long)

• add_optic in Fresnel systems can now insert optics at any index into an optical system, rather than just append-
ing at the end (#298 by @sdwill)

Software Infrastructure Updates and Internals:

• PR #290 for CompoundOpticalSystem involved refactoring the Wavefront and FresnelWavefront classes to both
be child classes of a new abstract base class BaseWavefront. This change should be transparent for most/all
users and requires no changes in calling code.

• PR #306 for wavelength-independent phase subsequently required refactoring of the optical element display
code to correctly handle all cases. As a result the display code internals were clarified and made more consistent.
(#314 and #321 by @mperrin with contributions from @ivalaginja and @shanosborne). Again this change
should be transparent for users.

• Removed deprecated / unused decorator function in WFE classes, making their get_opd function API consistent
with the rest of poppy. (#322 by @mperrin)

• Accomodate some upstream changes in astropy (#294 by @shanosborne, #330 by @mperrin)

• The poppy.Instrument._get_optical_system function, which has heretofore been an internal method (pri-
vate, starting with underscore) of the Instrument class, has been promoted to a public part of the API as
Instrument.get_optical_system().

• Note, minimum supported versions of some upstream packages such as numpy and matplotlib have been up-
dated.

Bug Fixes and Misc Improvements:

• Correctly assign BUNIT keyword after rescaling OPDs (#285, #286 by @laurenmarietta).

• New header keywords in output PSF files for OPD_FILE and OPDSLICE to more cleanly record the information
previously stored together in the PUPILOPD keyword (#316 by @mperrin)

• Update docs and example notebooks to replace deprecated function names with the current ones (#288 by
@corcoted).

• Improvements in resampling wavefronts onto Detector instances, particularly in cases where the wavefront is
already at the right plane so no propagation is needed. (Part of #290 by @mperrin, then further improved in
#304 by @sdwill)

• Allow passthrough of “normalize” keyword to measure_ee and measure_radius_at_ee functions (#333 by
@mperrin; #332 by @ariedel)

• Fix wavefront.as_fits complex wavefront output option (#293 by @mperrin)

• Stricter checking for consistent wavefront type and size parameters when summing wavefronts (#313 and #326
by @mperrin)

12 Chapter 2. Release Notes

https://github.com/spacetelescope/poppy/pull/307
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/315
https://github.com/ivalaginja
https://github.com/ivalaginja
https://github.com/spacetelescope/poppy/pull/317
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/306
https://github.com/joseph-long
https://github.com/spacetelescope/poppy/pull/298
https://github.com/sdwill
https://github.com/spacetelescope/poppy/pull/290
https://github.com/spacetelescope/poppy/pull/306
https://github.com/spacetelescope/poppy/pull/314
https://github.com/spacetelescope/poppy/pull/321
https://github.com/mperrin
https://github.com/ivalaginja
https://github.com/shanosborne
https://github.com/spacetelescope/poppy/pull/322
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/294
https://github.com/shanosborne
https://github.com/spacetelescope/poppy/pull/330
https://github.com/mperrin
https://github.com/spacetelescope/poppy/issues/285
https://github.com/spacetelescope/poppy/pull/286
https://github.com/laurenmarietta
https://github.com/spacetelescope/poppy/pull/316
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/288
https://github.com/corcoted
https://github.com/spacetelescope/poppy/pull/290
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/304
https://github.com/sdwill
https://github.com/spacetelescope/poppy/pull/333
https://github.com/mperrin
https://github.com/spacetelescope/poppy/issues/332
https://github.com/ariedel
https://github.com/spacetelescope/poppy/pull/293
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/313
https://github.com/spacetelescope/poppy/pull/326
https://github.com/mperrin

poppy Documentation, Release 0.9.0

• Fix an issue with MultiHexagonAperture in the specific case of 3 rings of hexes (#303 by @LucasMarquis and
@FredericCassaing; #307 by @mperrin)

• Fix an issue with BaseWavefront class refactor (#311 by @douglase and @jlumbres)

• Fix an issue with indexing in HexSegmentedDeformableMirror when missing the center segment (#318 by
@ivalaginja; #320 by @mperrin)

• Fix title display by OpticalElement.display function (#299 by @shanosborne)

• Fix display issue in SemiAnalyticCoronagraph class (#324 by @mperrin).

• Small improvements in some display labels (#307 by @mperrin)

Note, the new functionality for gray pixel representation of circular apertures does not work precisely for elliptical
apertures such as from inclined optics. You may see warnings about this in cases when you use inclination_y
or inclination_x attributes on a circular aperture. This warning is generally benign; the calculation is still more
accurate than it would be without the subpixel sampling, though not perfectly precise. This known issue will likely be
improved upon in a future release.

2.2 0.8.0

2018 December 15

Py2.7 support and deprecated function names removed

As previously announced, support for Python 2 has been removed in this release, as have the deprecated non-PEP8-
compliant function names.

New Functionality:

• The zernike submodule has gained better support for dealing with wavefront error defined over segmented
apertures. The Segment_Piston_Basis and Segment_PTT_Basis classes implement basis functions for piston-
only or piston/tip/tilt motions of arbitrary numbers of hexagonal segments. The opd_expand_segments function
implements a version of the opd_expand_orthonormal algorithm that has been updated to correctly handle
disjoint (non-overlapping support) basis functions defined on individual segments. (mperrin)

• Add new KnifeEdge optic class representing a sharp opaque half-plane, and a CircularPhaseMask representing
a circular region with constant optical path difference. (#273, @mperrin)

• Fresnel propagation can now automatically resample wavefronts onto the right pixel scales at Detector objects,
same as Fraunhofer propagation. (#242, #264, @mperrin)

• The display_psf function now can also handle datacubes produced by calc_datacube (#265, @mperrin)

Documentation:

• Various documentation improvements and additions, in particular including a new “Available Optics” page
showing visual examples of all the available optical element classes.

Bug Fixes and Software Infrastructure Updates:

• Removal of Python 2 compatibility code, Python 2 test cases on Travis, and similar (#239, @mperrin)

• Removal of deprecated non-PEP8 function names (@mperrin)

• Fix for output PSF formatting to better handle variable numbers of extensions (#219, @shanosborne)

• Fix for FITSOpticalElement opd_index parameter for selecting slices in datacubes (@mperrin)

• Fix inconsistent sign of rotations for FITSOpticalElements vs. other optics (#275, @mperrin)

2.2. 0.8.0 13

https://github.com/spacetelescope/poppy/issues/303
https://github.com/LucasMarquis
https://github.com/FredericCassaing
https://github.com/spacetelescope/poppy/pull/307
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/311
https://github.com/douglase
https://github.com/jlumbres
https://github.com/spacetelescope/poppy/issues/318
https://github.com/ivalaginja
https://github.com/spacetelescope/poppy/pull/320
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/299
https://github.com/shanosborne
https://github.com/spacetelescope/poppy/pull/324
https://github.com/mperrin
https://github.com/spacetelescope/poppy/pull/307
https://github.com/mperrin

poppy Documentation, Release 0.9.0

• Cleaned up the logic for auto-choosing input wavefront array sizes (#274, @mperrin)

• Updates to Travis doc build setup (#270, @mperrin, robelgeda)

• Update package organization and documentation theme for consistency with current STScI package template
(#267, #268, #278, @robelgeda)

• More comprehensive unit tests for Fresnel propagation. (#191, #251, #264, @mperrin)

• Update astropy-helpers to current version, and install bootstrap script too (@mperrin, @jhunkeler)

• Minor: doc string correction in FresnelWavefront (@sdwill), fix typo in some error messages (#255, @dou-
glase), update some deprecated logging function calls (@mperrin).

2.3 0.7.0

2018 May 30

Python version support: Future releases will require Python 3.

Please note, this is the final release to support Python 2.7. All future releases will require Python 3.5+. See here for
more information on migrating to Python 3.

Deprecated function names will go away in next release.

This is also the final release to support the older, deprecated function names with mixed case that are not compatible
with the Python PEP8 style guide (e.g. calcPSF instead of calc_psf, etc). Future versions will require the use of the
newer syntax.

Performance Improvements:

• Major addition of GPU-accelerated calculations for FFTs and related operations in many propagation calcu-
lations. GPU support is provided for both CUDA (NVidia GPUs) and OpenCL (AMD GPUs); the CUDA
implementation currently accelerates a slightly wider range of operations. Obtaining optimal performance, and
understanding tradeoffs between numpy, FFTW, and CUDA/OpenCL, will in general require tests on your par-
ticular hardware. As part of this, much of the FFT infrastructure has been refactored out of the Wavefront classes
and into utility functions in accel_math.py. This functionality and the resulting gains in performance are de-
scribed more in Douglas & Perrin, Proc. SPIE 2018. (#239, @douglase), (#250, @mperrin and @douglase).

• Additional performance improvements to other aspects of calculations using the numexpr package. Numexpr is
now a highly recommended optional installation. It may well become a requirement in a future release. (#239,
#245, @douglase)

• More efficient display of AnalyticOptics, avoiding unnecessary repetition of optics sampling. (@mperrin)

• Single-precision floating point mode added, for cases that do not require the default double precision floating
point and can benefit from the increased speed. (Experimental / beta; some intermediate calculations may still
be done in double precision, thus reducing speed gains).

New Functionality:

• New PhysicalFresnelWavefront class that uses physical units for the wavefront (e.g. volts/meter) and inten-
sity (watts). See this notebook for examples and further discussion. (#248, @daphil).

• calc_psf gains a new parameter to request returning the complex wavefront (#234,@douglase).

14 Chapter 2. Release Notes

https://python3statement.org
https://github.com/spacetelescope/poppy/pull/239
https://github.com/spacetelescope/poppy/pull/250
https://github.com/spacetelescope/poppy/pull/239
https://github.com/spacetelescope/poppy/pull/245
https://github.com/spacetelescope/poppy/blob/master/notebooks/Physical%20Units%20Demo.ipynb
https://github.com/spacetelescope/poppy/pull/234

poppy Documentation, Release 0.9.0

• Improved handling of irregular apertures in WFE basis functions (zernike_basis, hexike_basis, etc.) and
the opd_expand/opd_expand_nonorthonormal fitting functions (@mperrin).

• Added new function measure_radius_at_ee which finds the radius at which a PSF achieves some given
amount of encircled energy; in some sense an inverse to measure_ee. (#244, @shanosborne)

• Much improved algorithm for measure_fwhm: the function now works by fitting a Gaussian rather than in-
terpolating between a radial profile on fixed sampling. This yields much better results on low-sampled or
under-sampled PSFs. (@mperrin)

• Add ArrayOpticalElement class, providing a cleaner interface for creating arbitrary optics at runtime by gen-
erating numpy ndarrays on the fly and packing them into an ArrayOpticalElement. (@mperrin)

• Added new classes for deformable mirrors, including both ContinuousDeformableMirror and
HexSegmentedDeformableMirror (@mperrin).

Bug Fixes and Software Infrastructure Updates:

• The Instrument class methods and related API were updated to PEP8-compliant names. Old names remain for
back compatibility, but are deprecated and will be removed in the next release. Related code cleanup for better
PEP8 compliance. (@mperrin)

• Substantial update to semi-analytic fast coronagraph propagation to make it more flexible about optical plane
setup. Fixes #169 (#169, @mperrin)

• Fix for integer vs floating point division when padding array sizes in some circumstances (#235, @exowanderer,
@mperrin)

• Fix for aperture clipping in zernike.arbitrary_basis (#241, @kvangorkom)

• Fix / documentation fix for divergence angle in the Fresnel code (#237, @douglase). Note, the divergence
function now returns the half angle rather than the full angle.

• Fix for markcentroid and imagecrop parameters conflicting in some cases in display_psf (#231, @mperrin)

• For FITSOpticalElements with both shift and rotation set, apply the rotation first and then the shift for more
intuitive UI (@mperrin)

• Misc minor doc and logging fixes (@mperrin)

• Increment minimal required astropy version to 1.3, and minimal required numpy version to 1.10; and various
related Travis CI setup updates. Also added numexpr test case to Travis. (@mperrin)

• Improved unit test for Fresnel model of Hubble Space Telescope, to reduce memory usage and avoid CI hangs
on Travis.

• Update astropy-helpers submodule to current version; necessary for compatibility with recent Sphinx re-
leases. (@mperrin)

2.4 0.6.1

2017 August 11

• Update ah_bootstrap.py to avoid an issue where POPPY would not successfully install when pulled in as a
dependency by another package (@josephoenix)

2.5 0.6.0

2017 August 10

2.4. 0.6.1 15

https://github.com/spacetelescope/poppy/pull/244
https://github.com/spacetelescope/poppy/issues/169
https://github.com/spacetelescope/poppy/issues/235
https://github.com/spacetelescope/poppy/pull/241
https://github.com/spacetelescope/poppy/pull/237
https://github.com/spacetelescope/poppy/pull/231

poppy Documentation, Release 0.9.0

• WavefrontError and subclasses now handle tilts and shifts correctly (#229, @mperrin) Thanks @corcoted for
reporting!

• Fix the test_zernikes_rms test case to correctly take the absolute value of the RMS error, support outside=
for hexike_basis, enforce which arguments are required for zernike(). (#223, @mperrin) Thanks to @kvan-
gorkom for reporting!

• Bug fix for stricter Quantity behavior (UnitTypeError) in Astropy 2.0 (@mperrin)

• Added an optional parameter “mergemode” to CompoundAnalyticOptic which provides two ways to combine
AnalyticOptics: mergemode="and" is the previous behavior (and new default), mergemode="or" adds the trans-
missions of the optics, correcting for any overlap. (#227, @corcoted)

• Add HexagonFieldStop optic (useful for making hexagon image masks for JWST WFSC, among other misc
tasks.) (@mperrin)

• Fix behavior where zernike.arbitrary_basis would sometimes clip apertures (#222, @kvangorkom)

• Fix propagate_direct in fresnel wavefront as described in issue #216 <https://github.com/
spacetelescope/poppy/issues/216>_ (#218, @maciekgroch)

• display_ee() was not passing the ext= argument through to radial_profile(), but now it does. (#220,
@josephoenix)

• Fix displaying planes where what='amplitude' (#217, @maciekgroch)

• Fix handling of FITSOpticalElement big-endian arrays to match recent changes in SciPy (@mperrin) Thanks to
@douglase for reporting!

• radial_profile now handles nan values in radial standard deviations (#214, @douglase)

• The FITS header keywords that are meaningful to POPPY are now documented in fitsheaders and a new PIXUNIT
keyword encodes “units of the pixels in the header, typically either arcsecond or meter” (#205, @douglase)

• A typo in the handling of the markcentroid argument to display_psf is now fixed (so the argument can be set
True) (#211, @josephoenix)

• radial_profile now accepts an optional pa_range= argument to specify the [min, max] position angles to be
included in the radial profile. (@mperrin)

• Fixes in POPPY to account for the fact that NumPy 1.12+ raises an IndexError when non-integers are used to
index an array (#203, @kmdouglass)

• POPPY demonstration notebooks have been refreshed by @douglase to match output of the current code

2.6 0.5.1

2016 October 28

• Fix ConfigParser import (see astropy/package-template#172)

• Fixes to formatting of astropy.units.Quantity values (#171, #174, #179; @josephoenix, @neilzim)

• Fixes to fftw_save_wisdom and fftw_load_wisdom (#177, #178; @mmecthley)

• Add calc_datacube method to poppy.Instrument (#182; @mperrin)

• Test for Apple Accelerate more narrowly (#176; @mperrin)

• Wavefront.display() correctly handles vmin and vmax args (#183; @neilzim)

• Changes to Travis-CI configuration (#197; @etollerud)

16 Chapter 2. Release Notes

https://github.com/spacetelescope/poppy/issues/229
https://github.com/spacetelescope/poppy/issues/223
https://github.com/spacetelescope/poppy/pull/227
https://github.com/spacetelescope/poppy/pull/222
https://github.com/mperrin/poppy/pull/218
https://github.com/spacetelescope/poppy/pull/220
https://github.com/spacetelescope/poppy/pull/217
https://github.com/spacetelescope/poppy/pull/214
https://github.com/spacetelescope/poppy/pull/205
https://github.com/spacetelescope/poppy/pull/211
https://github.com/spacetelescope/poppy/pull/203
https://github.com/astropy/package-template/pull/172
https://github.com/spacetelescope/poppy/issues/171
https://github.com/mperrin/poppy/pull/174
https://github.com/mperrin/poppy/pull/174
https://github.com/spacetelescope/poppy/issues/177
https://github.com/mperrin/poppy/pull/178
https://github.com/spacetelescope/poppy/issues/182
https://github.com/spacetelescope/poppy/issues/176
https://github.com/spacetelescope/poppy/pull/183
https://github.com/spacetelescope/poppy/pull/197

poppy Documentation, Release 0.9.0

• Warn on requested field-of-view too large for pupil sampling (#180; reported by @mmechtley, addressed by
@mperrin)

• Bugfix for add_detector in FresnelOpticalSystem (#193; @maciekgroch)

• Fixes to unit handling and short-distance propagation in FresnelOpticalSystem (#194; @maciekgroch, @dou-
glase, @mperrin)

• PEP8 renaming for poppy.fresnel for consistency with the rest of POPPY: propagateTo becomes
propagate_to, addPupil and addImage become add_pupil and add_image, inputWavefront becomes
input_wavefront, calcPSF becomes calc_psf (@mperrin)

• Fix display_psf(..., markcentroid=True) (#175, @josephoenix)

2.7 0.5.0

2016 June 10

Several moderately large enhancements, involving lots of under-the-hood updates to the code. (While we have tested
this code extensively, it is possible that there may be some lingering bugs. As always, please let us know of any issues
encountered via ‘the github issues page <https://github.com/spacetelescope/poppy/issues/>‘_.)

• Increased use of astropy.units to put physical units on quantities, in particular wavelengths, pixel scales, etc.
Instead of wavelengths always being implicitly in meters, you can now explicitly say e.g. wavelength=1*u.
micron, wavelength=500*u.nm, etc. You can also generally use Quantities for arguments to OpticalElement
classes, e.g. radius=2*u.cm. This is optional; the API still accepts bare floating-point numbers which are
treated as implicitly in meters. (#145, #165; @mperrin, douglase)

• The getPhasor function for all OpticalElements has been refactored to split it into 3 functions:
get_transmission (for electric field amplitude transmission), get_opd (for the optical path difference affectig
the phase), and get_phasor (which combines transmission and OPD into the complex phasor). This division
simplifies and makes more flexible the subclassing of optics, since in many cases (such as aperture stops) one
only cares about setting either the transmission or the OPD. Again, there are back compatibility hooks to allow
existing code calling the deprecated getPhasor function to continue working. (#162; @mperrin, josephoenix)

• Improved capabilities for handling complex coordinate systems:

– Added new CoordinateInversion class to represent a change in orientation of axes, for instance the
flipping “upside down” of a pupil image after passage through an intermediate image plane.

– OpticalSystem.input_wavefront() became smart enough to check for CoordinateInversion and
Rotation planes, and, if the user has requested a source offset, adjust the input tilts such that the source
will move as requested in the final focal plane regardless of intervening coordinate transformations.

– FITSOpticalElement gets new options flip_x and flip_y to flip orientations of the file data.

• Update many function names for PEP8 style guide compliance. For instance calc_psf replaces calcPSF. This
was done with back compatible aliases to ensure that existing code continues to run with no changes required
at this time, but at some future point (but not soon!) the older names will go away, so users are encouranged to
migrate to the new names. (@mperrin, josephoenix)

And some smaller enhancements and fixes:

• New functions for synthesis of OPDs from Zernike coefficients, iterative Zernike expansion on obscured aper-
tures for which Zernikes aren’t orthonormal, 2x faster optimized computation of Zernike basis sets, and compu-
tation of hexike basis sets using the alternate ordering of hexikes used by the JWST Wavefront Analysis System
software. (@mperrin)

• New function for orthonormal Zernike-like basis on arbitrary aperture (#166; Arthur Vigan)

2.7. 0.5.0 17

https://github.com/spacetelescope/poppy/issues/180
https://github.com/spacetelescope/poppy/pull/193
https://github.com/spacetelescope/poppy/issues/194
https://github.com/spacetelescope/poppy/issues/175
https://github.com/spacetelescope/poppy/issues/145
https://github.com/mperrin/poppy/pull/165
https://github.com/spacetelescope/poppy/pull/162
https://www.python.org/dev/peps/pep-0008/
https://github.com/spacetelescope/poppy/issues/166

poppy Documentation, Release 0.9.0

• Flip the sign of defocus applied via the ThinLens class, such that positive defocus means a converging lens and
negative defocus means diverging. (#164; @mperrin)

• New wavefront_display_hint optional attribute on OpticalElements in an OpticalSystem allows customiza-
tion of whether phase or intensity is displayed for wavefronts at that plane. Applies to calc_psf calls with
display_intermediates=True. (@mperrin)

• When displaying wavefront phases, mask out and don’t show the phase for any region with intensity less than
1/100th of the mean intensity of the wavefront. This is to make the display less visually cluttered with near-
meaningless noise, especially in cases where a Rotation has sprayed numerical interpolation noise outside of the
true beam. The underlying Wavefront values aren’t affected at all, this just pre-filters a copy of the phase before
sending it to matplotlib.imshow. (@mperrin)

• remove deprecated parameters in some function calls (#148; @mperrin)

2.8 0.4.1

2016 Apr 4:

Mostly minor bug fixes:

• Fix inconsistency between older deprecated angle parameter to some optic classes versus new rotation pa-
rameter for any AnalyticOpticalElement (#140; @kvangorkom, @josephoenix, @mperrin)

• Update to newer API for psutil (#139; Anand Sivaramakrishnan, @mperrin)

• “measure_strehl” function moved to webbpsf instead of poppy. (#138; Kathryn St.Laurent, @josephoenix,
@mperrin)

• Add special case to handle zero radius pixel in circular BandLimitedOcculter. (#137; @kvangorkom, @mperrin)

• The output FITS header of an AnalyticOpticalElement’s toFITS() function is now compatible with the input
expected by FITSOpticalElement.

• Better saving and reloading of FFTW wisdom.

• Misc minor code cleanup and PEP8 compliance. (#149; @mperrin)

And a few more significant enhancements:

• Added MatrixFTCoronagraph subclass for fast optimized propagation of coronagraphs with finite fields of
view. This is a related variant of the approach used in the SemiAnalyticCoronagraph class, suited for coro-
nagraphs with a focal plane field mask limiting their field of view, for instance those under development for
NASA’s WFIRST mission. (#128; #147; @neilzim)

• The OpticalSystem class now has npix and pupil_diameter parameters, consistent with the
FresnelOpticalSystem. (#141; @mperrin)

• Added SineWaveWFE class to represent a periodic phase ripple.

2.9 0.4.0

2015 November 20

• Major enhancement: the addition of Fresnel propagation (#95, #100, #103, #106, #107, #108, #113, #114,
#115, #100, #100; @douglase, @mperrin, @josephoenix) Many thanks to @douglase for the initiative and code
contributions that made this happen.

• Improvements to Zernike aberration models (#99, #110, #121, #125; @josephoenix)

18 Chapter 2. Release Notes

https://github.com/spacetelescope/poppy/issues/164
https://github.com/spacetelescope/poppy/issues/148
https://github.com/spacetelescope/poppy/issues/140
https://github.com/spacetelescope/poppy/issues/139
https://github.com/spacetelescope/poppy/issues/138
https://github.com/spacetelescope/poppy/issues/137
https://github.com/spacetelescope/poppy/issues/149
https://github.com/spacetelescope/poppy/pull/128
https://github.com/mperrin/poppy/pull/147
https://github.com/spacetelescope/poppy/issues/141
https://github.com/spacetelescope/poppy/issue/95
https://github.com/spacetelescope/poppy/pull/100
https://github.com/spacetelescope/poppy/issue/103
https://github.com/spacetelescope/poppy/issue/106
https://github.com/spacetelescope/poppy/pull/107
https://github.com/spacetelescope/poppy/pull/108
https://github.com/spacetelescope/poppy/pull/113
https://github.com/spacetelescope/poppy/issue/114
https://github.com/spacetelescope/poppy/pull/115
https://github.com/spacetelescope/poppy/pull/100
https://github.com/spacetelescope/poppy/pull/100
https://github.com/spacetelescope/poppy/pull/99
https://github.com/spacetelescope/poppy/pull/110
https://github.com/spacetelescope/poppy/pull/121
https://github.com/spacetelescope/poppy/pull/125

poppy Documentation, Release 0.9.0

• Consistent framework for applying arbitrary shifts and rotations to any AnalyticOpticalElement (#7, @mperrin)

• When reading FITS files, OPD units are now selected based on BUNIT header keyword instead of always being
“microns” by default, allowing the units of files to be set properly based on the FITS header.

• Added infrastructure for including field-dependent aberrations at an optical plane after the entrance pupil (#105,
@josephoenix)

• Improved loading and saving of FFTW wisdom (#116, #120, #122, @josephoenix)

• Allow configurable colormaps and make image origin position consistent (#117, @josephoenix)

• Wavefront.tilt calls are now recorded in FITS header HISTORY lines (#123; @josephoenix)

• Various improvements to unit tests and test infrastructure (#111, #124, #126, #127; @josephoenix, @mperrin)

2.10 0.3.5

2015 June 19

• Now compatible with Python 3.4 in addition to 2.7! (#83, @josephoenix)

• Updated version numbers for dependencies (@josephoenix)

• Update to most recent astropy package template (@josephoenix)

• AsymmetricSecondaryObscuration enhanced to allow secondary mirror supports offset from the center of the
optical system. (@mperrin)

• New optic AnnularFieldStop that defines a circular field stop with an (optional) opaque circular center region
(@mperrin)

• display() functions now return Matplotlib.Axes instances to the calling functions.

• FITSOpticalElement will now determine if you are initializing a pupil plane optic or image plane optic based
on the presence of a PUPLSCAL or PIXSCALE header keyword in the supplied transmission or OPD files (with the
transmission file header taking precedence). (#97, @josephoenix)

• The poppy.zernike.zernike() function now actually returns a NumPy masked array when called with
mask_array=True

• poppy.optics.ZernikeAberration and poppy.optics.ParameterizedAberration have been moved to poppy.wfe and
renamed ZernikeWFE and ParameterizedWFE. Also, ZernikeWFE now takes an iterable of Zernike coefficients
instead of (n, m, k) tuples.

• Various small documentation updates

• Bug fixes for:

– redundant colorbar display (#82)

– Unnecessary DeprecationWarnings in poppy.utils.imshow_with_mouseover() (#53)

– Error in saving intermediate planes during calculation (#81)

– Multiprocessing causes Python to hang if used with Apple Accelerate (#23, n.b. the fix depends on Python
3.4)

– Copy in-memory FITS HDULists that are passed in to FITSOpticalElement so that in-place modifications
don’t affect the caller’s copy of the data (#89)

– Error in the poppy.utils.measure_EE() function produced values for the edges of the radial bins that
were too large, biasing EE values and leading to weird interpolation behavior near r = 0. (#96)

2.10. 0.3.5 19

https://github.com/spacetelescope/poppy/pull/7
https://github.com/spacetelescope/poppy/pull/105
https://github.com/spacetelescope/poppy/issue/116
https://github.com/spacetelescope/poppy/issue/120
https://github.com/spacetelescope/poppy/issue/122
https://github.com/spacetelescope/poppy/pull/117
https://github.com/spacetelescope/poppy/pull/123
https://github.com/spacetelescope/poppy/pull/111
https://github.com/spacetelescope/poppy/pull/124
https://github.com/spacetelescope/poppy/pull/126
https://github.com/spacetelescope/poppy/pull/127
https://github.com/spacetelescope/poppy/pull/82
https://github.com/spacetelescope/poppy/pull/97
https://github.com/spacetelescope/poppy/pull/82
https://github.com/spacetelescope/poppy/issues/53
https://github.com/spacetelescope/poppy/issues/81
https://github.com/spacetelescope/poppy/issues/23
https://github.com/spacetelescope/poppy/issues/89
https://github.com/spacetelescope/poppy/pull/96

poppy Documentation, Release 0.9.0

2.11 0.3.4

2015 February 17

• Continued improvement in unit testing (@mperrin, @josephoenix)

• Continued improvement in documentation (@josephoenix, @mperrin)

• Functions such as addImage, addPupil now also return a reference to the added optic, for convenience
(@josephoenix)

• Multiprocessing code and semi-analytic coronagraph method can now return intermediate wavefront planes
(@josephoenix)

• Display methods for radial profile and encircled energy gain a normalization keyword (@douglase)

• matrixDFT: refactor into unified function for all centering types (@josephoenix)

• matrixDFT bug fix for axes parity flip versus FFT transforms (Anand Sivaramakrishnan, @josephoenix, @mper-
rin)

• Bug fix: Instrument class can now pass through dict or tuple sources to OpticalSystem calc_psf (@mperrin)

• Bug fix: InverseTransmission class shape property works now. (@mperrin)

• Refactor instrument validateConfig method and calling path (@josephoenix)

• Code cleanup and rebalancing where lines had been blurred between poppy and webbpsf (@josephoenix,
@mperrin)

• Misc packaging infrastructure improvements (@embray)

• Updated to Astropy package helpers 0.4.4

• Set up integration with Travis CI for continuous testing. See https://travis-ci.org/mperrin/poppy

2.12 0.3.3

2014 Nov

Bigger team!. This release log now includes github usernames of contributors:

• New classes for wavefront aberrations parameterized by Zernike polynomials (@josephoenix, @mperrin)

• ThinLens class now reworked to require explicitly setting an outer radius over which the wavefront is normal-
ized. Note this is an API change for this class, and will require minor changes in code using this class. ThinLens
is now a subclass of CircularAperture.

• Implement resizing of phasors to allow use of FITSOpticalElements with Wavefronts that have different spatial
sampling. (@douglase)

• Installation improvements and streamlining (@josephoenix, @cslocum)

• Code cleanup and formatting (@josephoenix)

• Improvements in unit testing (@mperrin, @josephoenix, @douglase)

• Added normalize=’exit_pupil’ option; added documentation for normalization options. (@mperrin)

• Bug fix for “FQPM on an obscured aperture” example. Thanks to Github user qisaiman for the bug report.
(@mperrin)

• Bug fix to compound optic display (@mperrin)

20 Chapter 2. Release Notes

https://travis-ci.org/mperrin/poppy

poppy Documentation, Release 0.9.0

• Documentation improvements (team)

2.13 0.3.2

Released 2014 Sept 8

• Bug fix: Correct pupil orientation for inverse transformed pupils using PyFFTW so that it is consistent with the
result using numpy FFT.

2.14 0.3.1

Released August 14 2014

• Astropy compatibility updated to 0.4.

– Configuration system reworked to accomodate the astropy.configuration transition.

– Package infrastructure updated to most recent astropy package-template.

• Several OpticalElements got renamed, for instance IdealCircularOcculter became just CircularOcculter.
(All the optics in poppy are fairly idealized and it seemed inconsistent to signpost that for only some of them.
The explicit ‘Ideal’ nametag is kept only for the FQPM to emphasize that one in particular uses a very simplified
prescription and neglects refractive index variation vs wavelength.)

• Substantially improved unit test system.

• Some new utility functions added in poppy.misc for calculating analytic PSFs such as Airy functions for com-
parison (and use in the test system).

• Internal code reorganization, mostly which should not affect end users directly.

• Packaging improvements and installation process streamlining, courtesy of Christine Slocum and Erik Bray

• Documentation improvements, in particular adding an IPython notebook tutorial.

2.15 0.3.0

Released April 7, 2014

• Dependencies updated to use astropy.

• Added documentation and examples for POPPY, separate from the WebbPSF documentation.

• Improved configuration settings system, using astropy.config framework.

– The astropy.config framework itself is in flux from astropy 0.3 to 0.4; some of the related functionality in
poppy may need to change in the future.

• Added support for rectangular subarray calculations. You can invoke these by setting fov_pixels or fov_arcsec
with a 2-element iterable:

>> nc = webbpsf.NIRCam()
>> nc.calc_psf('F212N', fov_arcsec=[3,6])
>> nc.calc_psf('F187N', fov_pixels=(300,100))

Those two elements give the desired field size as (Y,X) following the usual Python axis order convention.

2.13. 0.3.2 21

https://github.com/astropy/package-template/

poppy Documentation, Release 0.9.0

• Added support for pyFFTW in addition to PyFFTW3.

• pyFFTW will auto save wisdom to disk for more rapid execution on subsequent invocations

• InverseTransmission of an AnalyticElement is now allowed inside a CompoundAnalyticOptic

• Added SecondaryObscuration optic to conveniently model an opaque secondary mirror and adjustible support
spiders.

• Added RectangleAperture. Added rotation keywords for RectangleAperture and SquareAperture.

• Added AnalyticOpticalElement.sample() function to sample analytic functions onto a user defined grid. Refac-
tored the display() and toFITS() functions. Improved functionality of display for CompoundAnalyticOptics.

2.16 0.2.8

• First release as a standalone package (previously was integrated as part of webbpsf). See the release notes for
WebbPSF for prior verions.

• switched package building to use setuptools instead of distutils/stsci_distutils_hack

• new Instrument class in poppy provides much of the functionality previously in JWInstrument, to make it
easier to model generic non-JWST instruments using this code.

22 Chapter 2. Release Notes

https://docs.python.org/3/library/distutils.html#module-distutils

CHAPTER 3

Overview

The module poppy implements an object-oriented system for modeling physical optics propagation with diffraction,
particularly for telescopic and coronagraphic imaging. Right now only image and pupil planes are supported; inter-
mediate planes are a future goal.

Poppy also includes a system for modeling a complete instrument (including optical propagation, synthetic photome-
try, and pointing jitter), and a variety of useful utility functions for analysing and plotting PSFs, documented below.

Key Concepts:

To model optical propagation, poppy implements an object-oriented system for representing an optical train. There
are a variety of OpticalElement classes representing both physical elements as apertures, mirrors, and apodizers, and
also implicit operations on wavefronts, such as rotations or tilts. Each OpticalElement may be defined either via
analytic functions (e.g. a simple circular aperture) or by numerical input FITS files (e.g. the complex JWST aperture
with appropriate per-segment WFE). A series of such OpticalElement objects is chained together in order in an
OpticalSystem class. That class is capable of generating Wavefront instances suitable for propagation through the
desired elements (with correct array size and sampling), and onto the final image plane.

There is an even higher level class Instrument which adds support for selectable instrument mechanisms (such as
filter wheels, pupil stops, etc). In particular it adds support for computing via synthetic photometry the appropriate
weights for multiwavelength computations through a spectral bandpass filter, and for PSF blurring due to pointing jitter
(neither of which effects are modeled by OpticalSystem). Given a specified instrument configuration, an appropriate
OpticalSystem is generated, the appropriate wavelengths and weights are calculated based on the bandpass filter and
target source spectrum, the PSF is calculated, and optionally is then convolved with a blurring kernel due to pointing
jitter. For instance, all of the WebbPSF instruments are implemented by subclassing poppy.Instrument.

3.1 Fraunhofer domain calculations

poppy’s default mode assumes that optical propagation can be modeled using Fraunhofer diffraction (the “far field”
approximation), such that the relationship between pupil and image plane optics is given by two-dimensional Fourier
transforms. (Fresnel propagation is also available, with slightly different syntax.)

Two different algorithmic flavors of Fourier transforms are used in Poppy. The familiar FFT algorithm is used for
transformations between pupil and image planes in the general case. This algorithm is relatively fast (O(N log(N)))

23

poppy Documentation, Release 0.9.0

but imposes strict constraints on the relative sizes and samplings of pupil and image plane arrays. Obtaining fine
sampling in the image plane requires very large oversized pupil plane arrays and vice versa, and image plane pixel
sampling becomes wavelength dependent. To avoid these constraints, for transforms onto the final Detector plane,
instead a Matrix Fourier Transform (MFT) algorithm is used (See Soummer et al. 2007 Optics Express). This allows
computation of the PSF directly on the desired detector pixel scale or an arbitrarily finely subsampled version therof.
For equivalent array sizes N, the MFT is slower than the FFT(O(N^3)), but in practice the ability to freely choose a
more appropriate N (and to avoid the need for post-FFT interpolation onto a common pixel scale) more than makes up
for this and the MFT is faster.

Note: This code makes use of the python standard module logging for output information. Top-level details of the
calculation are output at level logging.INFO, while details of the propagation through each optical plane are printed
at level logging.DEBUG. See the Python logging documentation for an explanation of how to redirect the poppy logger
to the screen, a textfile, or any other log destination of your choice.

3.2 Working with OpticalElements

OpticalElements can be instantiated from FITS files, or created by one of a large number of analytic function defini-
tions implemented as AnalyticOpticalElement subclasses. Typically these classes take some number of arguments
to set their properties. Once instantiated, any analytic function can be displayed on screen, sampled onto a numerical
grid, and/or saved to disk.:

>>> ap = poppy.CircularAperture(radius=2) # create a simple circular aperture
>>> ap.display(what='both') # display both intensity and phase components

>>> values = ap.sample(npix=512) # evaluate on 512 x 512 grid
>>> ap.to_fits('test_circle.fits', npix=1024) # write to disk as a FITS file with higher sampling

When sampling an AnalyticOpticalElement, you may choose to obtain various representations of its action on a
complex wavefront, including the amplitude transmission; intensity transmission; or phase delay in waves, radians, or
meters. See the AnalyticOpticalElement class documentation for detailed arguments to these functions.

OpticalElement objects have attributes such as shape (For a FITSOpticalElement the array shape in usual
Python (Y,X) order; None for a AnalyticOpticalElement), a descriptive name string, and size information such
as pixelscale. The type of size information present depends on the plane type.

3.3 Optical Plane Types

An OpticalSystem consists of a series of two or more planes, of various types. The plane type of a given
OpticalElement is encoded by its planetype attribute. The allowed types of planes are:

• Pupil planes, which have spatial scale measured in meters. For instance a telescope could have a diameter of 1
meter and be represented inside an array 1024x1024 pixels across with pixel scale 0.002 meters/pixel, so that
the aperture is a circle filling half the diameter of the array. Pupil planes typically have a pupil_diam attribute
which, please note, defines the diameter of the numerical array (e.g. 2.048 m in this example), rather than
whatever subset of that array has nonzero optical transmission.

• Image planes, which have angular sampling measured in arcseconds. The default behavior for an image plane
in POPPY is to have the sampling automatically defined by the natural sampling of a Fourier Transform of the
previous pupil array. This is generally appropriate for most intermediate optical planes in a system. However
there are also:

24 Chapter 3. Overview

http://adsabs.harvard.edu/abs/2007OExpr..1515935S

poppy Documentation, Release 0.9.0

• Detector planes, which are a specialized subset of image plane that has a fixed angular sampling (pixel scale).
For instance one could compute the PSF of that telescope over a field of view 10 arcseconds square with a
sampling of 0.01 arcseconds per pixel.

• Rotation planes, which represent a change of coordinate system rotating by some number of degrees around the
optical axis. Note that POPPY always represents an “unfolded”, linear optical system; fold mirrors and/or other
intermediate powered optics are not represented as such. Rotations can take place after either an image or pupil
plane.

POPPY thus is capable of representing a moderate subset of optical imaging systems, though it is not intended as a
substitute for a professional optics design package such as Zemax or Code V for design of full optical systems.

3.4 Defining your own custom optics

All OpticalElement classes must have methods get_transmission and get_opd which returns the amplitude trans-
mission and optical path delay representing that optic, sampled appropriately for a given input Wavefront and at
the appropriate wavelength. These are combined together to calculate the complex phasor which is applied to the
wavefront’s electric field. To define your own custom OpticalElements, you can:

1. Subclass AnalyticOpticalElement and write suitable function(s) to describe the properties of your optic,

2. Combine two or more existing AnalyticOpticalElement instances as part of a CompoundAnalyticOptic, or

3. Generate suitable transmission and optical path difference arrays using some other tool, save them as FITS files
with appropriate keywords, and instantiate them as an FITSOpticalElement

FITSOpticalElements have separate attributes for amplitude and phase components, which may be read separately
from 2 FITS files:

• amplitude, the electric field amplitude transmission of the optic

• opd, the optical path difference of the optic

Defining functions on a AnalyticOpticalElement subclass allows more flexibility for amplitude transmission or OPDs
to vary with wavelength or other properties.

See Extending POPPY by defining your own optics and instruments for more details and examples.

3.4. Defining your own custom optics 25

poppy Documentation, Release 0.9.0

26 Chapter 3. Overview

CHAPTER 4

Examples

Let’s dive right in to some example code.

(A runnable notebook version of this examples page is included in the notebooks subdirectory of the poppy source,
or is available from here.)

For all of the following examples, you will have more informative text output when running the code if you first enable
Python’s logging mechanism to display log messages to screen:

import logging
logging.basicConfig(level=logging.DEBUG)

• A simple circular pupil

• A complex segmented pupil

• Multiple defocused PSFs

• Band Limited Coronagraph with Off-Axis Source

• FQPM coronagraph

• FQPM on an Obscured Aperture (demonstrates compound optics)

• Semi-analytic Coronagraph Calculations

• Shifting and rotating optics

• Adjusting Display of Intermediate Wavefronts

4.1 A simple circular pupil

This is very simple, as it should be:

27

https://github.com/spacetelescope/poppy/blob/master/notebooks/POPPY%20Examples.ipynb

poppy Documentation, Release 0.9.0

osys = poppy.OpticalSystem()
osys.add_pupil(poppy.CircularAperture(radius=3)) # pupil radius in meters
osys.add_detector(pixelscale=0.010, fov_arcsec=5.0) # image plane coordinates in arcseconds

psf = osys.calc_psf(2e-6) # wavelength in microns
poppy.display_psf(psf, title='The Airy Function')

4.2 A complex segmented pupil

By combining multiple analytic optics together it is possible to create quite complex pupils:

ap = poppy.MultiHexagonAperture(rings=3, flattoflat=2) # 3 rings of 2 m segments yields 14.1␣
→˓m circumscribed diameter
sec = poppy.SecondaryObscuration(secondary_radius=1.5, n_supports=4, support_width=0.1) # secondary␣
→˓with spiders
atlast = poppy.CompoundAnalyticOptic(opticslist=[ap, sec], name='Mock ATLAST') # combine␣
→˓into one optic

atlast.display(npix=1024, colorbar_orientation='vertical')

28 Chapter 4. Examples

poppy Documentation, Release 0.9.0

And here’s the PSF:

osys = poppy.OpticalSystem()
osys.add_pupil(atlast)
osys.add_detector(pixelscale=0.010, fov_arcsec=2.0)
psf = osys.calc_psf(1e-6)

poppy.display_psf(psf, title="Mock ATLAST PSF")

4.2. A complex segmented pupil 29

poppy Documentation, Release 0.9.0

4.3 Multiple defocused PSFs

Defocus can be added using a lens:

wavelen=1e-6
nsteps = 4
psfs = []
for nwaves in range(nsteps):

osys = poppy.OpticalSystem("test", oversample=2)
osys.add_pupil(poppy.CircularAperture(radius=3)) # pupil radius in meters
osys.add_pupil(poppy.ThinLens(nwaves=nwaves, reference_wavelength=wavelen, radius=3))
osys.add_detector(pixelscale=0.01, fov_arcsec=4.0)

(continues on next page)

30 Chapter 4. Examples

poppy Documentation, Release 0.9.0

(continued from previous page)

psf = osys.calc_psf(wavelength=wavelen)
psfs.append(psf)

plt.subplot(1,nsteps, nwaves+1)
poppy.display_psf(psf, title='Defocused by {0} waves'.format(nwaves),

colorbar_orientation='horizontal')

4.4 Band Limited Coronagraph with Off-Axis Source

As an example of a more complicated calculation, here’s a NIRCam-style band limited coronagraph with the source
not precisely centered:

oversample=2
pixelscale = 0.010 #arcsec/pixel
wavelength = 4.6e-6

osys = poppy.OpticalSystem("test", oversample=oversample)
osys.add_pupil(poppy.CircularAperture(radius=6.5/2))
osys.add_image()
osys.add_image(poppy.BandLimitedCoron(kind='circular', sigma=5.0))
osys.add_pupil()
osys.add_pupil(poppy.CircularAperture(radius=6.5/2))
osys.add_detector(pixelscale=pixelscale, fov_arcsec=3.0)

osys.source_offset_theta = 45.
osys.source_offset_r = 0.1 # arcsec
psf = osys.calc_psf(wavelength=wavelength, display_intermediates=True)

4.4. Band Limited Coronagraph with Off-Axis Source 31

poppy Documentation, Release 0.9.0

4.5 FQPM coronagraph

Four quadrant phase mask coronagraphs are a bit more complicated because one needs to ensure proper alignment of
the FFT result with the center of the phase mask. This is done using a virtual optic called an ‘FQPM FFT aligner’ as
follows:

optsys = poppy.OpticalSystem()
optsys.add_pupil(poppy.CircularAperture(radius=3, pad_factor=1.5)) #pad display area by 50%
optsys.add_pupil(poppy.FQPM_FFT_aligner()) # ensure the PSF is centered on the FQPM cross hairs
optsys.add_image() # empty image plane for "before the mask"
optsys.add_image(poppy.IdealFQPM(wavelength=2e-6))
optsys.add_pupil(poppy.FQPM_FFT_aligner(direction='backward')) # undo the alignment tilt after going␣
→˓back to the pupil plane
optsys.add_pupil(poppy.CircularAperture(radius=3)) # Lyot mask - change radius if desired
optsys.add_detector(pixelscale=0.01, fov_arcsec=10.0)

psf = optsys.calc_psf(wavelength=2e-6, display_intermediates=True)

32 Chapter 4. Examples

poppy Documentation, Release 0.9.0

4.6 FQPM on an Obscured Aperture (demonstrates compound op-
tics)

As a variation, we can add a secondary obscuration. This can be done by creating a compound optic consisting of
the circular outer aperture plus an opaque circular obscuration. The latter we can make using the InverseTransmission
class.

primary = poppy.CircularAperture(radius=3)
secondary = poppy.InverseTransmission(poppy.CircularAperture(radius=0.5))
aperture = poppy.CompoundAnalyticOptic(opticslist = [primary, secondary])

optsys = poppy.OpticalSystem()
optsys.add_pupil(aperture)
optsys.add_pupil(poppy.FQPM_FFT_aligner()) # ensure the PSF is centered on the FQPM cross hairs
optsys.add_image(poppy.IdealFQPM(wavelength=2e-6))
optsys.add_pupil(poppy.FQPM_FFT_aligner(direction='backward')) # undo the alignment tilt after going␣
→˓back to the pupil plane
optsys.add_pupil(poppy.CircularAperture(radius=3)) # Lyot mask - change radius if desired
optsys.add_detector(pixelscale=0.01, fov_arcsec=10.0)

optsys.display()

(continues on next page)

4.6. FQPM on an Obscured Aperture (demonstrates compound optics) 33

poppy Documentation, Release 0.9.0

(continued from previous page)

psf = optsys.calc_psf(wavelength=2e-6, display_intermediates=True)

4.7 Semi-analytic Coronagraph Calculations

In some cases, coronagraphy calculations can be sped up significantly using the semi-analytic algorithm of Soummer et
al. This is implemented by first creating an OpticalSystem as usual, and then casting it to a SemiAnalyticCoronagraph
class (which has a special customized propagation method implementing the alternate algorithm):

The following code performs the same calculation both ways and compares their speeds:

radius = 6.5/2
lyot_radius = 6.5/2.5
pixelscale = 0.060

osys = poppy.OpticalSystem("test", oversample=8)
osys.add_pupil(poppy.CircularAperture(radius=radius), name='Entrance Pupil')
osys.add_image(poppy.CircularOcculter(radius = 0.1))
osys.add_pupil(poppy.CircularAperture(radius=lyot_radius), name='Lyot Pupil')
osys.add_detector(pixelscale=pixelscale, fov_arcsec=5.0)

(continues on next page)

34 Chapter 4. Examples

poppy Documentation, Release 0.9.0

(continued from previous page)

plt.figure(1)
sam_osys = poppy.SemiAnalyticCoronagraph(osys, oversample=8, occulter_box=0.15)

import time
t0s = time.time()
psf_sam = sam_osys.calc_psf(display_intermediates=True)
t1s = time.time()

plt.figure(2)
t0f = time.time()
psf_fft = osys.calc_psf(display_intermediates=True)
t1f = time.time()

plt.figure(3)
plt.clf()
plt.subplot(121)
poppy.utils.display_psf(psf_fft, title="FFT")
plt.subplot(122)
poppy.utils.display_psf(psf_sam, title="SAM")

print "Elapsed time, FFT: %.3s" % (t1f-t0f)
print "Elapsed time, SAM: %.3s" % (t1s-t0s)

On my circa-2010 Mac Pro, the results are dramatic:

Elapsed time, FFT: 62.
Elapsed time, SAM: 4.1

4.8 Shifting and rotating optics

All OpticalElements support arbitrary shifts and rotations of the optic. Set the shift_x, shift_y or rotation at-
tributes. The shifts are given in meters for pupil plane optics, or arcseconds for image plane optics. Rotations are
given in degrees counterclockwise around the optical axis.

As an example, we can demonstrate the invariance of PSFs when an aperture is shifted:

ap_regular = poppy.CircularAperture(radius=2, pad_factor=1.5) # pad_factor is important here - without␣
→˓it you will
ap_shifted = poppy.CircularAperture(radius=2, pad_factor=1.5) # crop off part of the circle outside␣
→˓the array. (continues on next page)

4.8. Shifting and rotating optics 35

poppy Documentation, Release 0.9.0

(continued from previous page)

ap_shifted.shift_x =-0.75
ap_shifted.shift_y = 0.25

plt.figure(figsize=(6,6))

for optic, title, i in [(ap_regular, 'Unshifted', 1), (ap_shifted, 'Shifted', 3)]:

sys = poppy.OpticalSystem()
sys.add_pupil(optic)
sys.add_detector(0.010, fov_pixels=100)
psf = sys.calc_psf()

ax1 = plt.subplot(2,2,i)
optic.display(nrows=2, colorbar=False, ax=ax1)
ax1.set_title(title+' pupil')
ax2 = plt.subplot(2,2,i+1)
poppy.display_psf(psf,ax=ax2, colorbar=False)
ax2.set_title(title+' PSF')

36 Chapter 4. Examples

poppy Documentation, Release 0.9.0

In addition to setting the attributes as shown in the above example, these options can be set directly in the initialization
of such elements:

ap = poppy.RectangleAperture(rotation=30, shift_x=0.1)
ap.display(colorbar=False)

4.8. Shifting and rotating optics 37

poppy Documentation, Release 0.9.0

4.9 Adjusting Display of Intermediate Wavefronts

When calculating a wavefront, you can display each intermediate wavefront plane, which often helps to visualize
what’s happening in a given propagation calculation. This is done by setting display_intermediates=True:

psf = osys.calc_psf(display_intermediates=True)

Poppy attempts to guess reasonable defaults for displaying each intermediate planes, but sometimes you may wish
to override these defaults. This can be done by setting “display hint” attributes on the planes of your optical system.
Available options include

• wavefront_display_hint = "intensity" or "phase" to set what kind of display is shown for the complex
wavefront at that plane

38 Chapter 4. Examples

poppy Documentation, Release 0.9.0

• wavefront_display_vmax_hint and wavefront_display_vmin_hint to adjust the parameters of the display
scale

• wavefront_display_imagecrop to adjust the cropping or zoom of how much of a wavefront is displayed (by
default, pupil planes are not cropped, while image planes are cropped to 5 arcseconds to better show the details
of the inner core region of a PSF).

• display_annotate can be set to an arbitrary function to be called in order to apply custom annotations, or any
other plot adjustment outside of the scope of the above display hints.

For instance, here’s a variation of the above coronagraph calculation with some of the display parameters adjusted:

radius = 6.5/2 * u.m
lyot_radius = 6.5/2.5 *u.m
pixelscale = 0.060 *u.arcsec/u.pixel
osys = poppy.OpticalSystem(oversample=4)
pupil = poppy.CircularAperture(radius=radius)

occulter = poppy.CircularOcculter(radius = 0.1*u.arcsec)
adjust display size and color scale after the occulter
occulter.wavefront_display_imagecrop = 1.0
occulter.wavefront_display_vmin_hint=1e-6

lyotstop = poppy.CircularAperture(radius=lyot_radius)
hint that we would like to see intensity rather than phase after Lyot stop
lyotstop.wavefront_display_hint='intensity'

osys.add_pupil(pupil)
osys.add_image(occulter)
osys.add_pupil(lyotstop)
osys.add_detector(pixelscale=pixelscale, fov_arcsec=2.0)
you can also set hints onto optics in the planes list
osys.planes[-1].wavefront_display_vmin_hint = 1e-6

plt.figure(figsize=(8,8))
psf = osys.calc_psf(wavelength = 1*u.micron, display_intermediates=True)

4.9. Adjusting Display of Intermediate Wavefronts 39

poppy Documentation, Release 0.9.0

40 Chapter 4. Examples

CHAPTER 5

Available Optical Element Classes

There are many available predefined types of optical elements in poppy. In addition you can easily specify your own
custom optics.

• Pupils and Aperture Stops

• Image Plane Elements

• General Purpose Elements

• Wavefront Errors

• Deformable Mirrors

• Supplying Custom Optics from Files or Arrays

5.1 Pupils and Aperture Stops

These optics have dimensions specified in meters, or other units of length. They can be used in the pupil planes of a
Fraunhofer optical system, or any plane of a Fresnel optical system. All of these may be translated or rotated around
in the plane by setting the rotation, shift_x or shift_y parameters.

5.1.1 CircularAperture

A basic aperture stop.

[3]: optic = poppy.CircularAperture(radius=1)
optic.display(what='both');

41

poppy Documentation, Release 0.9.0

5.1.2 SquareAperture

A square stop. The specified size is the length across any one side.

[4]: optic = poppy.SquareAperture(size=1.0)
optic.display(what='both');

42 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.1.3 RectangularAperture

Specify the width and height to define a rectangle.

[5]: optic = poppy.RectangleAperture(width=0.5*u.m, height=1.0*u.m)
optic.display(what='both');

5.1. Pupils and Aperture Stops 43

poppy Documentation, Release 0.9.0

5.1.4 HexagonAperture

For instance, one segment of a segmented mirror.

[6]: optic = poppy.HexagonAperture(side=1.0)
optic.display(what='both');

44 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.1.5 MultiHexagonAperture

Arbitrarily many hexagons, in rings. You can adjust the size of each hex, the gap width between them, and whether
any hexes are missing (in particular the center one).

[7]: optic = poppy.MultiHexagonAperture(side=1, rings=1, gap=0.05, center=True)
optic.display(what='both');

5.1. Pupils and Aperture Stops 45

poppy Documentation, Release 0.9.0

5.1.6 NgonAperture

Triangular apertures or other regular polygons besides hexagons are uncommon, but a generalized N-gon aperture
allows modeling them if needed.

[8]: optic = poppy.NgonAperture(nsides=5)
optic.display(what='both');

46 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.1.7 SecondaryObscuration

This class adds an obstruction which is supported by a regular evenly-spaced grid of identical struts, or set
n_supports=0 for a free-standing obscuration.

[9]: optic = poppy.SecondaryObscuration(secondary_radius=1.0,
n_supports=4,
support_width=5*u.cm)

optic.display(what='both');

5.1. Pupils and Aperture Stops 47

poppy Documentation, Release 0.9.0

5.1.8 AsymmetricSecondaryObscuration

This class allows making more complex “spider” support patterns than the SecondaryObscuration class. Each strut
may individually be adjusted in angle, width, and offset in x and y from the center of the aperture. Angles are given
in a convention such that the +Y axis is 0 degrees, and increase counterclockwise (based on the typical astronomical
convention that north is the origin for position angles, increasing towards east.)

[10]: optic = poppy.AsymmetricSecondaryObscuration(secondary_radius=0.3*u.m,
support_angle=(40, 140, 220, 320),
support_width=[0.05, 0.03, 0.03, 0.05],
support_offset_x=[0, -0.2, 0.2, 0],
name='Complex secondary')

optic.display(what='both');

48 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.1.9 ThinLens

This models a lens or powered mirror in the thin-lens approximation, with the retardance specified in terms of a number
of waves at a given wavelength. The lens is perfectly achromatic.

[11]: optic = poppy.ThinLens(nwaves=1, reference_wavelength=1e-6*u.m, radius=10*u.cm)
optic.display(what='both');

5.1. Pupils and Aperture Stops 49

poppy Documentation, Release 0.9.0

5.1.10 GaussianAperture

This Gaussian profile can be used for instance to model an apodizer in the pupil plane, or to model a beam launched
from a fiber optic.

[12]: optic = poppy.GaussianAperture(fwhm=1*u.m)
optic.display(what='both');

50 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.1.11 KnifeEdge

A knife edge is an infinite opaque half-plane.

[13]: optic = poppy.optics.KnifeEdge(rotation=0)
optic.display(what='both');

5.1. Pupils and Aperture Stops 51

poppy Documentation, Release 0.9.0

5.2 Image Plane Elements

Image plane classes have dimensions specified in units of arcseconds projected onto the sky. These classes can be
placed in image planes in either Fraunhofer or Fresnel optical systems.

5.2.1 SquareFieldStop

[14]: optic = poppy.SquareFieldStop()
optic.display(what='both');

52 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.2.2 RectangularFieldStop

This class can be used to implement a spectrograph slit, for instance.

[15]: optic = poppy.RectangularFieldStop()
optic.display(what='both');

5.2. Image Plane Elements 53

poppy Documentation, Release 0.9.0

5.2.3 AnnularFieldStop

You can also use this as a circular field stop by setting radius_inner=0.

[16]: optic = poppy.optics.AnnularFieldStop(radius_inner=1, radius_outer=3)
optic.display(what='both');

54 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.2.4 HexagonFieldStop

[17]: optic = poppy.optics.HexagonFieldStop()
optic.display(what='both');

5.2. Image Plane Elements 55

poppy Documentation, Release 0.9.0

5.2.5 CircularOcculter

[19]: optic = poppy.optics.CircularOcculter()
optic.display(what='both');

56 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.2.6 BarOcculter

This is an opaque bar or line.

[20]: optic = poppy.optics.BarOcculter(width=1, height=10)
optic.display(what='both');

5.2. Image Plane Elements 57

poppy Documentation, Release 0.9.0

5.2.7 BandLimitedCoronagraph

[21]: optic = poppy.BandLimitedCoronagraph()
optic.display(what='both');

58 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.2.8 Four Quadrant Phase Mask

The class is named IdealFQPM because this implements a notionally perfect 4QPM at some given wavelength; it has
precisely half a wave retardance at the reference wavelength.

[22]: optic = poppy.IdealFQPM(wavelength=1*u.micron)
optic.display(what='both');

5.2. Image Plane Elements 59

poppy Documentation, Release 0.9.0

5.3 General Purpose Elements

5.3.1 ScalarTransmission

This class implements a uniformly multiplicative transmission factor, i.e. a neutral density filter.

[3]: optic = poppy.ScalarTransmission(transmission=0.85)
optic.display(what='both');

60 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.3.2 Inverse Transmission

This optic acts on another to flip the transmission: Areas which were 0 become 1 and vice versa. This operation is not
meant as a representative of some real physical process itself, but can be useful in building certain types of compound
optics.

[4]: circ = poppy.CircularAperture(radius=1)
ax1= plt.subplot(121)
circ.display(what='amplitude', ax=ax1)

ax2= plt.subplot(122)
inverted_circ = poppy.InverseTransmission(circ)
inverted_circ.display(grid_size=3, what='amplitude', ax=ax2)

5.3. General Purpose Elements 61

poppy Documentation, Release 0.9.0

5.4 Wavefront Errors

Wavefront error classes can be used to represent various forms of phase delay, typically at a pupil plane. Further
documentation on these classes can be found here.

5.4.1 ZernikeWFE

Wavefront errors can be specified by giving a list of Zernike coefficients, which are ordered using the Noll indexing
convention. The different Zernikes are then added together to make an overall wavefront map.

Note that while the Zernikes are defined with respect to some notional circular aperture of a given radius, by default
this class just implements the wavefront error part, not the aperture stop.

[17]: optic = poppy.ZernikeWFE(radius=1*u.cm,
coefficients=[0.1e-6, 3e-6, -3e-6, 1e-6, -7e-7, 0.4e-6, -2e-6],
aperture_stop=False)

optic.display(what='both', opd_vmax=1e-5, grid_size=0.03);

62 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

You can optionally set the parameter aperture_stop=True to ZernikeWFE if you want it to also act as a circular
aperture stop.

[18]: optic = poppy.ZernikeWFE(radius=1*u.cm,
coefficients=[0, 2e-6, 3e-6, 2e-6, 0, 0.4e-6, 1e-6],
aperture_stop=True)

optic.display(what='both', opd_vmax=1e-5, grid_size=0.03);

5.4. Wavefront Errors 63

poppy Documentation, Release 0.9.0

5.4.2 SineWaveWFE

A sinusoidal ripple across a mirror, for instance a deformable mirror. Specify the ripple by the spatial frequency (i.e.
cycles per meter). Use the amplitude, rotation and phaseoffset parameters to adjust the sine wave.

[16]: optic = poppy.SineWaveWFE(spatialfreq=5/u.meter,
amplitude=1*u.micron,
rotation=20)

optic.display(what='both', opd_vmax=1*u.micron);

64 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

5.4.3 StatisticalPSDWFE

A wavefront error from a random phase with a power spectral density from a power law of index -index. The seed
parameter allows to reinitialize the pseudo-random number generator

[3]: optic = poppy.wfe.StatisticalPSDWFE(index=3.0, wfe=50*u.nm, radius=7*u.mm, seed=None)
optic.display(what='both', opd_vmax=150*u.nm);

5.4. Wavefront Errors 65

poppy Documentation, Release 0.9.0

5.5 Deformable Mirrors

5.5.1 Continuous Deformable Mirrors

Represents a continuous phase-sheet DM, such as from Boston Micromachines or AOA Xinetics. Individual actu-
ators in the DM can be addressed and poked with the set_actuator function. That function takes 3 parameters:
set_actuator(x_act, y_act, piston).

[3]: dm = poppy.dms.ContinuousDeformableMirror(dm_shape=(16,16), actuator_spacing=0.3*u.mm, radius=2.3*u.mm)
dm.set_actuator(2, 4, 1e-6)
dm.set_actuator(12, 12, -1e-6)
dm.display(what='both', opd_vmax=1*u.micron);

66 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

You can also set all actuators in the entire DM surface at once by calling set_surface with a suitably-sized array.

[4]: dm = poppy.dms.ContinuousDeformableMirror(dm_shape=(32,32), actuator_spacing=0.3*u.mm, radius=4.9*u.mm)
target_surf = fits.getdata('dm_example_surface.fits')
dm.set_surface(target_surf);
dm.display(what='both');

5.5. Deformable Mirrors 67

poppy Documentation, Release 0.9.0

The DM class has much more functionality than currently shown here, including loading measured influence functions
and models of high-spatial-frequency actuator print-through. These features are not yet fully documented but please
contact Marshall if you’re interested.

5.6 Hexagonally Segmented Deformable Mirrors

For instance, one of the devices made by Iris AO.

In this case, the set_actuator function takes 4 parameters: set_actuator(segment_number, piston, tip,
tilt).

[5]: hexdm = poppy.dms.HexSegmentedDeformableMirror(rings=3)
hexdm.set_actuator(12, 0.5*u.micron, 0, 0)
hexdm.set_actuator(18, -0.25*u.micron, 0, 0)
hexdm.set_actuator(6, 0, -0.25*u.microradian, 0)
for i in range (19, 37, 3): hexdm.set_actuator(i, 0, 0, 2*u.microradian)
hexdm.display(what='both');

68 Chapter 5. Available Optical Element Classes

poppy Documentation, Release 0.9.0

[]:

5.6. Hexagonally Segmented Deformable Mirrors 69

poppy Documentation, Release 0.9.0

70 Chapter 5. Available Optical Element Classes

CHAPTER 6

Representing sources of wavefront error

POPPY allows you to introduce wavefront error at any plane in an optical system through use of a wavefront error
optical element. For Fraunhofer-domain propagation, the optical element types discussed here will act as pupil-
conjugate planes. Currently, there is the ZernikeWFE optical element to represent wavefront error as a combination
of Zernike terms, and the ParameterizedWFE optical element that offers the ability to specify basis sets other than
Zernikes. Several such basis functions are provided, along with tools for composing and decomposing wavefront
errors using these bases. There is also a SineWaveWFE element that lets you represent a simple sinusoidal phase ripple.

6.1 ZernikeWFE

The ZernikeWFE analytic optical element provides a way to introduce wavefront error as a combination of Zernike
terms. The Zernike terms are both ordered in and normalized in the convention of Noll 1976.1 This means that the
polynomial terms carry a normalization factor to make

∫︀ 2𝜋

0

∫︀ 1

0
𝑍2
𝑗 𝜌 𝑑𝜌 𝑑𝜃 = 𝜋. Additionally, the standard deviation

of the optical path difference over the disk for any given term will be 1.0 meters.

Now, 1.0 meters is a lot of OPD, so coefficients supplied to ZernikeWFE for realistic situations will typically be on the
order of the wavelength of light being passed through the system. For example, for 100 nanometers RMS wavefront
error in a particular term, the coefficient would be 100e-9 meters. (For information on representing certain values of
peak-to-valley wavefront error, see Normalizing to desired peak-to-valley WFE.)

To construct a ZernikeWFE optical element, the following keyword arguments are used:

• coefficients – A sequence of coefficients in the 1-D ordering of Noll 1976. Note that the first element in Noll’s
indexing convention is 𝑗 = 1, but Python indices are numbered from 0, so coefficients[0] corresponds to
the coefficient for 𝑗 = 1.

• radius – The radius in meters (in the pupil plane) which the Zernike unit disk covers. Transmission beyond
this radius is cut off, just as with a circular aperture of the same radius, so choose one large enough to enclose
the entire pupil area.

Here’s an example that creates a ZernikeWFE optic to apply zero piston, 30 nm RMS of “tip”, and 200 nm RMS of
“tilt” to an optical system with a 2 meter diameter pupil.

1 Noll, R. J. “Zernike polynomials and atmospheric turbulence.” JOSA, 1976. doi:10.1364/JOSA.66.000207

71

https://dx.doi.org/10.1364%2FJOSA.66.000207

poppy Documentation, Release 0.9.0

wfe = poppy.ZernikeWFE(radius=1.0, coefficients=[0, 3e-8, 2e-7])

The wfe optic can then be added to the OpticalSystem as usual. Next we’ll look at some examples of using
ZernikeWFE with their output.

The examples that follow make use of the following common constants:

RADIUS = 1.0 # meters
WAVELENGTH = 460e-9 # meters
PIXSCALE = 0.01 # arcsec / pix
FOV = 1 # arcsec
NWAVES = 1.0

6.1.1 Using ZernikeWFE to introduce astigmatism in a PSF

Per the 1-D indexing convention in Noll 1976, oblique astigmatism is 𝑗 = 5 and vertical astigmatism is 𝑗 = 6. For a
contribution of 35 nm RMS from oblique astigmatism, the coefficients sequence looks like [0, 0, 0, 0, 35e-9].

coefficients_sequence = [0, 0, 0, 0, 35e-9]

osys = poppy.OpticalSystem()
circular_aperture = poppy.CircularAperture(radius=RADIUS)
osys.add_pupil(circular_aperture)
thinlens = poppy.ZernikeWFE(radius=RADIUS, coefficients=coefficients_sequence)
osys.add_pupil(thinlens)
osys.add_detector(pixelscale=PIXSCALE, fov_arcsec=FOV)

psf_with_zernikewfe = osys.calc_psf(wavelength=WAVELENGTH, display_intermediates=True)

The resulting PSF and OPD map:

Fig. 1: PSF of a 2.0 meter diameter circular aperture with oblique astigmatism applied.

72 Chapter 6. Representing sources of wavefront error

poppy Documentation, Release 0.9.0

6.1.2 Using ZernikeWFE to analyze a variety of possible PSFs given a WFE budget

The API for ZernikeWFE also lends itself well to generating coefficients programmatically and passing it in. Say we
have an error budget where we know the following about the RMS wavefront error in the Zernike components:

• Piston, j=1 — disregarded for a telescope

• Tilt X, j=2 — ±100 nm RMS

• Tilt Y, j=3 — ±100 nm RMS

• Focus, j=4 — ±50 nm RMS

• Astigmatism 45, j=5 — ±36 nm RMS

• Astigmatism 0, j=6 — ±36 nm RMS

We can use ZernikeWFE to generate a library of sample PSFs satisfying this error budget. First, we write a short
function that can generate coefficients from our specifications.

wfe_budget = [0, 100, 100, 50, 36, 36]

def generate_coefficients(wfe_budget):
coefficients = []
for term in wfe_budget:

coefficients.append(
convert nm to meters, get value in range
np.random.uniform(low=-1e-9 * term, high=1e-9 * term)

)
return coefficients

Then we use this to generate a few sets of coefficients.

possible_coefficients = [generate_coefficients(wfe_budget) for i in range(5)]

Now we simply loop over the sets of coefficients, supplying them to ZernikeWFE:

plt.figure(figsize=(18,2))

results = []

for coefficient_set in possible_coefficients:
osys = poppy.OpticalSystem()
circular_aperture = poppy.CircularAperture(radius=RADIUS)
osys.add_pupil(circular_aperture)
zwfe = poppy.ZernikeWFE(

coefficients=coefficient_set,
radius=RADIUS

)
osys.add_pupil(zwfe)
osys.add_detector(pixelscale=PIXSCALE, fov_arcsec=FOV)

psf = osys.calc_psf(wavelength=WAVELENGTH, display=False)
results.append(psf)

Here’s a figure showing the various PSFs with their corresponding OPD maps pulled out for illustration purposes.

6.1. ZernikeWFE 73

poppy Documentation, Release 0.9.0

Fig. 2: PSF of a 2.0 meter diameter circular aperture with randomized combinations of aberrations applied.
74 Chapter 6. Representing sources of wavefront error

poppy Documentation, Release 0.9.0

6.1.3 Normalizing to desired peak-to-valley WFE

If you are trying to achieve a certain number of waves peak-to-valley in the optical path difference for your
ZernikeWFE element, this normalization may be important! One example is defocus: In older conventions, the Zernike
polynomial for defocus is 𝑎(2𝜌2−1) and 𝑎 is a defocus coefficient given in wavelengths of light center-to-peak. When
expressing this in POPPY, there are a number of differences.

The first difference is that POPPY’s ZernikeWFE deals in optical path difference rather than waves, so representing
two waves of defocus at 1.5 um would be a coefficient of 3.0× 10−6 meters.

The second difference is that we need a factor of a half to account for the fact that we are working in waves peak-to-
valley rather than waves center-to-peak. That gives 3.0

2 × 10−6 meters

The final difference is that the normalization factor will have to be canceled out. The Zernike polynomial for defocus
is 𝑍𝑚

𝑛 = 𝑍0
2 , and for terms with 𝑚 = 0 the normalization coefficient applied is

√
𝑛+ 1. (For all other terms except

piston, it is
√
2
√
𝑛+ 1. For piston, which has a constant value of 1.0, no additional normalization is necessary.)

Therefore, to achieve 2 waves at 1.5 um, the coefficient supplied to ZernikeWFE should be 3.0
2
√
3
× 10−6 um.

This can be checked by comparing the poppy.ThinLens behavior with an equivalent ZernikeWFE optic. ThinLens
takes a reference wavelength, a radius, and a number of waves (peak-to-valley) of defocus to apply.

First, the ThinLens:

osys = poppy.OpticalSystem()
circular_aperture = poppy.CircularAperture(radius=RADIUS)
osys.add_pupil(circular_aperture)

thinlens = poppy.ThinLens(nwaves=NWAVES, reference_wavelength=WAVELENGTH, radius=RADIUS)
osys.add_pupil(thinlens)

osys.add_detector(pixelscale=PIXSCALE, fov_arcsec=FOV)

psf_thinlens = osys.calc_psf(wavelength=WAVELENGTH, display_intermediates=True)

Second, the equivalent ZernikeWFE usage, with the appropriate coefficient:

defocus_coefficient = NWAVES * WAVELENGTH / (2 * np.sqrt(3))
coefficients_sequence = [0, 0, 0, defocus_coefficient]

osys = poppy.OpticalSystem()
circular_aperture = poppy.CircularAperture(radius=RADIUS)
osys.add_pupil(circular_aperture)
zernikewfe = poppy.ZernikeWFE(radius=RADIUS, coefficients=coefficients_sequence)
osys.add_pupil(zernikewfe)
osys.add_detector(pixelscale=PIXSCALE, fov_arcsec=FOV)

psf_zernikewfe = osys.calc_psf(wavelength=WAVELENGTH, display_intermediates=True)

If we plot psf_thinlens, psf_zernikewfe, and their difference (for confirmation) we will see:

6.2 ParameterizedWFE

The ParameterizedWFE class allows additional flexibility in expressing a wavefront error in a subset of cases that can
be expressed as a linear combination of OPD (phase) terms in the pupil. Zernike polynomials are a special case of
this. There are also “hexike” functions in POPPY, defined to be orthonormal on a unit hexagon, which can be used
with ParameterizedWFE.

6.2. ParameterizedWFE 75

poppy Documentation, Release 0.9.0

Fig. 3: Comparison of PSF from a ThinLens with 1 wave of defocus to a PSF from an equivalent ZernikeWFE optic.

The way you select a basis for your ParameterizedWFE optic is through the basis_factory keyword argument. This
can be a function like poppy.zernike.zernike_basis, poppy.zernike.hexike_basis, or a function of your own
design. These functions will be called during the calculation with some arguments (described below), and must return
a data cube where the first (outermost) axis is planes corresponding to the first n terms of the basis.

Any basis factory function must accept an nterms argument indicating how many terms are to be calculated, npix
as one way to set the number of pixels on a side for the planes of the data cube, rho and theta arrays which (in the
absence of being passed npix) provide the radial and angular coordinate for each pixel in the pupil. (You can expect
pixels with rho less than or equal to 1.0 to lie in the illuminated region of the pupil plane.) Lastly, they must accept an
outside argument which defines the appropriate value for pixels in your basis terms that lie outside of the illuminated
region. (Typical default values are 0.0 and nan.)

Rather than attempt to exhaustively describe the construction of such functions, we recommend consulting the code
for poppy.zernike.zernike_basis, poppy.zernike.hexike_basis, and poppy.ParameterizedWFE to see how it
all fits together.

6.2.1 Example comparing zernike_basis and hexike_basis

As a brief demonstration, let’s adapt the defocus example above to use zernike_basis.

from poppy import zernike

osys = poppy.OpticalSystem()
circular_aperture = poppy.CircularAperture(radius=RADIUS)
osys.add_pupil(circular_aperture)
thinlens = poppy.ParameterizedWFE(radius=RADIUS,

coefficients=[0, 0, 0, NWAVES * WAVELENGTH / (2 * np.sqrt(3))],
basis_factory=zernike.zernike_basis # here's where we specify the basis set

)
osys.add_pupil(thinlens)
osys.add_detector(pixelscale=PIXSCALE, fov_arcsec=FOV)

psf_with_zernikewfe = osys.calc_psf(wavelength=WAVELENGTH, display_intermediates=True)

If you plot this PSF, you will see one identical to that shown above. Now let’s modify it to use hexike_basis.
The first change is to replace the CircularAperture with a HexagonAperture. The second is to supply
basis_factory=zernike.hexike_basis. Here’s the code sample:

from poppy import zernike

osys = poppy.OpticalSystem()
hex_aperture = poppy.HexagonAperture(side=RADIUS) # modified to use hexagonal aperture

(continues on next page)

76 Chapter 6. Representing sources of wavefront error

poppy Documentation, Release 0.9.0

(continued from previous page)

osys.add_pupil(hex_aperture)
thinlens = poppy.ParameterizedWFE(radius=RADIUS,

coefficients=[0, 0, 0, NWAVES * WAVELENGTH / (2 * np.sqrt(3))],
basis_factory=zernike.hexike_basis # now using the 'hexike' basis

)
osys.add_pupil(thinlens)
osys.add_detector(pixelscale=PIXSCALE, fov_arcsec=FOV)

psf_with_hexikewfe = osys.calc_psf(wavelength=WAVELENGTH, display_intermediates=True, return_
→˓intermediates=True)

If we plot the new PSF, we will get a hexagonal PSF with a central minimum typical of a single wave of defocus.
(Using the same setup with a hexagon aperture and a Zernike basis gets a much less pronounced central minimum, as
the Zernike polynomials are only orthonormal over the unit circle.)

Fig. 4: A defocused PSF from a hexagonal aperture and a “Hexike” polynomial term to express the defocus.

6.3 Basis functions for modeling wavefront error

Zernike polynomials are most generally referred to via a tuple of indices (𝑛,𝑚). The following functions compute
Zernikes given (𝑛,𝑚).

• poppy.zernike.zernike() computes a 2D array for a specified Zernike

• poppy.zernike.str_zernike() returns the analytic Zernike polynomial in LaTeX formatting.

But in many cases it is more practical to reference Zernikes via a 1-dimensional index. poppy does this using the
so-called Noll indexing convention (Noll et al. JOSA 1976). Conversion from 1-D to 2-D indices is via the poppy.
zernike.noll_indices() function.

• poppy.zernike.zernike1() returns the Zernike polynomial 𝑍𝑗 .

• poppy.zernike.cached_zernike1() is a faster but somewhat less flexible computation of 𝑍𝑗 .

• poppy.zernike.zern_name() returns a descriptive name such as “spherical” or “coma” for a given 𝑍𝑗 .

6.3. Basis functions for modeling wavefront error 77

poppy Documentation, Release 0.9.0

Frequently we want to work with an entire basis set of Zernike polynomials at once. poppy implements this via “basis
functions”, which each return 3-d ndarray datacubes including the first 𝑛 terms of a given basis set. Several such bases
are available. Each of these functions takes as arguments the number of terms desired in the basis, as well as the
desired sampling (how many pixels across each side of the output arrays).

• poppy.zernike.zernike_basis() is the standard Zernike polynomials over a unit circle

• poppy.zernike.hexike_basis() is the Hexikes over a unit hexagon

• poppy.zernike.arbitrary_basis() uses the Gram-Schmidt orthonormalization algorthm to generate an or-
thonormal basis for any supplied arbitrary aperture shape.

• poppy.zernike.Segment_Piston_Basis implements bases defined by hexagonal segments controlled in pis-
ton only. Unlike the prior basis functions, this one is a function class: first you must instantiate it to specify the
desired number of hexagons and other pupil geometry information, and then you can use the resulting object as
a basis function to compute the hexikes.

• poppy.zernike.Segment_PTT_Basis is similar, but each segment can be controlled in piston, tip, and tilt.

Using any of the above basis functions, OPD arrays can be decomposed into coefficients per each term, or conversely
OPD arrays can be generated from provided coefficients. There are several functions provided for OPD decomposition,
tuned for different usage scenarios.

• poppy.zernike.opd_from_zernikes() generates an OPD from providend coefficients. Despite the name this
function can actually be used with any of the above basis sets.

• poppy.zernike.opd_expand() projects a given OPD into a Zernike or Hexike basis, and returns the resulting
coefficients. This works best when dealing with cases closer to ideal, i.e. Zernikes over an actually-circular
aperture.

• poppy.zernike.opd_expand_nonorthonormal() does the same, but uses an alternate iterative algorithm that
works better when dealing with basis sets that are not strictly orthonormal over the given aperture.

• poppy.zernike.opd_expand_segments() uses the same iterative algorithm but with some adjustments to bet-
ter handle spatially disjoint basis elements such as different segments. Use this for best results if you’re dealing
with a segmented aperture.

78 Chapter 6. Representing sources of wavefront error

CHAPTER 7

Efficient Lyot coronagraph propagation

Poppy has extensive functionality to faciliate the modeling of coronagraph point spread functions. In addition to the
general summary of those capabilities here, see the examples in the notebooks subdirectory: POPPY Examples and
MatrixFTCoronagraph_demo.

7.1 Introduction

By default, an optical system defined in Poppy uses the Fast Fourier Transform (FFT) to propagate the scalar field
between pupil and image planes. While the FFT is a powerful tool for general Fraunhofer diffraction calculations, it is
rarely the most computationally efficient approach for a coronagraph model. Consider the two coronagraph schematics
below, from Zimmerman et al (2016):

The upper design in the figure represents the classical Lyot coronagraph and its widely implemented, optimized de-
scendent, the apodized pupil Lyot coronagraph (APLC). In this case an intermediate focal plane (labeled B) is occulted
by a round, opaque mask. By applying the principle of electromagnetic field superposition, combined with knowledge
of how FFT complexity scales with array size, Soummer et al. (2007) showed that the number of operations needed to
compute the PSF is greatly reduced by replacing the FFT with discrete Fourier transfoms, implemented in a vectorized
fashion and spatially restricted to the occulted region of the intermediate focal plane. This is the now widely-used
semi-analytical computational method for numerically modeling Lyot coronagraphs.

79

https://github.com/spacetelescope/poppy/blob/master/notebooks/POPPY%20Examples.ipynb
https://github.com/spacetelescope/poppy/blob/master/notebooks/MatrixFTCoronagraph_demo.ipynb
http://dx.doi.org/10.1117/1.JATIS.2.1.011012
http://dx.doi.org/10.1051/0004-6361:20021573
http://dx.doi.org/10.1364/OE.15.015935

poppy Documentation, Release 0.9.0

The lower design in the above figure shows a slightly different Lyot coronagraph design case. Here the focal plane
mask (FPM) is a diaphragm that restricts the outer edge of the transmitted field. Zimmerman et al. (2016) showed how
this design variant can solve the same starlight cancellation problem, in particular for the baseline design of WFIRST.
With this FPM geometry, the superposition simplification of Soummer et al. (2007) is not valid. However, again
the execution time is greatly reduced by using discrete, vectorized Fourier transforms, now spatially restricted to the
transmitted region of the intermediate focal plane.

In Poppy, two subclasses of OpticalSystem exploit the computational methods described above: SemiAnalyticCoron-
agraph and MatrixFTCoronagraph. Let’s see how to make use of these subclasses to speed up Lyot corongraph PSF
calculations.

7.2 Lyot coronagraph using the SemiAnalytic subclass

In this example we consider a Lyot coronagraph with a conventional, opaque occulting spot. This configuration
corresponds to the upper half of the schematic described above.

The semi-analytic method is specified by first creating an OpticalSystem as usual, and then casting it to a SemiAna-
lyticCoronagraph class (which has a special customized propagation method implementing the alternate algorithm):

The following code performs the same calculation both with semi-analytical and FFT propagation, and compares their
speeds:

radius = 6.5/2
lyot_radius = 6.5/2.5
pixelscale = 0.060

osys = poppy.OpticalSystem("test", oversample=8)
osys.add_pupil(poppy.CircularAperture(radius=radius), name='Entrance Pupil')
osys.add_image(poppy.CircularOcculter(radius = 0.1))
osys.add_pupil(poppy.CircularAperture(radius=lyot_radius), name='Lyot Pupil')
osys.add_detector(pixelscale=pixelscale, fov_arcsec=5.0)

plt.figure(1)
sam_osys = poppy.SemiAnalyticCoronagraph(osys, oversample=8, occulter_box=0.15)

import time
t0s = time.time()
psf_sam = sam_osys.calc_psf(display_intermediates=True)
t1s = time.time()

plt.figure(2)
t0f = time.time()
psf_fft = osys.calc_psf(display_intermediates=True)
t1f = time.time()

plt.figure(3)
plt.clf()
plt.subplot(121)
poppy.utils.display_psf(psf_fft, title="FFT")
plt.subplot(122)
poppy.utils.display_psf(psf_sam, title="SAM")

print("Elapsed time, FFT: %.3s" % (t1f-t0f))
print("Elapsed time, SAM: %.3s" % (t1s-t0s))

80 Chapter 7. Efficient Lyot coronagraph propagation

http://dx.doi.org/10.1117/1.JATIS.2.1.011012
http://dx.doi.org/10.1364/OE.15.015935

poppy Documentation, Release 0.9.0

On a circa-2010 Mac Pro, the results are dramatic:

Elapsed time, FFT: 62.
Elapsed time, SAM: 4.1

7.3 Lyot coronagraph using the MatrixFTCoronagraph subclass

This coronagraph uses an annular diaphragm in the intermediate focal plane, corresponding to the lower half of the
diagram above.

The procedure to enable the MatrixFTCoronagraph propagation is analogous to the SemiAnalytic case. We create an
OpticalSystem as usual, and then cast it to a MatrixFTCoronagraph class.

Again we will compare the execution time with the FFT case.:

D = 2.
wavelen = 1e-6
ovsamp = 8

Annular diaphragm FPM, inner radius ~ 4 lam/D, outer rad ~ 16 lam/D
fftcoron_annFPM_osys = poppy.OpticalSystem(oversample=ovsamp)
fftcoron_annFPM_osys.add_pupil(poppy.CircularAperture(radius=D/2))
spot = poppy.CircularOcculter(radius=0.4)
diaphragm = poppy.InverseTransmission(poppy.CircularOcculter(radius=1.6))
annFPM = poppy.CompoundAnalyticOptic(opticslist = [diaphragm, spot])
fftcoron_annFPM_osys.add_image(annFPM)
fftcoron_annFPM_osys.add_pupil(poppy.CircularAperture(radius=0.9*D/2))
fftcoron_annFPM_osys.add_detector(pixelscale=0.05, fov_arcsec=4.)

Re-cast as MFT coronagraph with annular diaphragm FPM
matrixFTcoron_annFPM_osys = poppy.MatrixFTCoronagraph(fftcoron_annFPM_osys, occulter_box=diaphragm.
→˓uninverted_optic.radius_inner)
t0_fft = time.time()
annFPM_fft_psf, annFPM_fft_interm = fftcoron_annFPM_osys.calc_psf(wavelen, display_intermediates=True,\

return_intermediates=True)
t1_fft = time.time()

plt.figure()
t0_mft = time.time()
annFPM_mft_psf, annFPM_mft_interm = matrixFTcoron_annFPM_osys.calc_psf(wavelen, display_
→˓intermediates=True,\

return_intermediates=True)
(continues on next page)

7.3. Lyot coronagraph using the MatrixFTCoronagraph subclass 81

poppy Documentation, Release 0.9.0

(continued from previous page)

t1_mft = time.time()

Plot the results:

plt.figure(figsize=(16,3.5))
plt.subplots_adjust(left=0.10, right=0.95, bottom=0.02, top=0.98, wspace=0.2, hspace=None)
plt.subplot(131)
ax_fft, cbar_fft = poppy.display_psf(annFPM_fft_psf, vmin=1e-10, vmax=1e-7, title='Annular FPM Lyot␣
→˓coronagraph, FFT',

return_ax=True)
plt.subplot(132)
poppy.display_psf(annFPM_mft_psf, vmin=1e-10, vmax=1e-7, title='Annular FPM Lyot coronagraph, Matrix FT
→˓')
plt.subplot(133)
diff_vmin = np.min(annFPM_mft_psf[0].data - annFPM_fft_psf[0].data)
diff_vmax = np.max(annFPM_mft_psf[0].data - annFPM_fft_psf[0].data)
poppy.display_psf_difference(annFPM_mft_psf, annFPM_fft_psf, vmin=diff_vmin, vmax=diff_vmax, cmap='gist_
→˓heat')
plt.title('Difference (MatrixFT - FFT)')

Print some of the propagation parameters:

lamoD_asec = wavelen/fftcoron_annFPM_osys.planes[0].pupil_diam * 180/np.pi * 3600
print("System diffraction resolution element scale (lambda/D) in arcsec: %.3f" % lamoD_asec)
print("Array width in first focal plane, FFT: %d" % annFPM_fft_interm[1].amplitude.shape[0])
print("Array width in first focal plane, MatrixFT: %d" % annFPM_mft_interm[1].amplitude.shape[0])
print("Array width in Lyot plane, FFT: %d" % annFPM_fft_interm[2].amplitude.shape[0])
print("Array width in Lyot plane, MatrixFT: %d" % annFPM_mft_interm[2].amplitude.shape[0])

System diffraction resolution element scale (lambda/D) in arcsec: 0.103
Array width in first focal plane, FFT: 8192
Array width in first focal plane, MatrixFT: 248
Array width in Lyot plane, FFT: 8192
Array width in Lyot plane, MatrixFT: 1024

Compare the elapsed time:

print("Elapsed time, FFT: %.1f s" % (t1_fft-t0_fft))
print("Elapsed time, Matrix FT: %.1f s" % (t1_mft-t0_mft))

Elapsed time, FFT: 142.0 s
Elapsed time, Matrix FT: 3.0 s

82 Chapter 7. Efficient Lyot coronagraph propagation

poppy Documentation, Release 0.9.0

7.4 Band-limited coronagraph

Depending on the specific implementation, a Lyot coronagraph with a band-limited occulter can also benefit from
the semi-analytical method in Poppy. For additional band-limited coronagraph examples, see the JWST NIRCam
coronagraph modes included in WebbPSF.

As an example of a more complicated coronagraph PSF calculation than the ones above, here’s a NIRCam-style band
limited coronagraph with the source not precisely centered:

oversample=2
pixelscale = 0.010 #arcsec/pixel
wavelength = 4.6e-6

osys = poppy.OpticalSystem("test", oversample=oversample)
osys.add_pupil(poppy.CircularAperture(radius=6.5/2))
osys.add_image()
osys.add_image(poppy.BandLimitedCoron(kind='circular', sigma=5.0))
osys.add_pupil()
osys.add_pupil(poppy.CircularAperture(radius=6.5/2))
osys.add_detector(pixelscale=pixelscale, fov_arcsec=3.0)

osys.source_offset_theta = 45.
osys.source_offset_r = 0.1 # arcsec
psf = osys.calc_psf(wavelength=wavelength, display_intermediates=True)

7.4. Band-limited coronagraph 83

http://github.com/spacetelescope/webbpsf

poppy Documentation, Release 0.9.0

7.5 FQPM coronagraph

Due to the wide (ideally infinite) spatial extension of its focal plane phase-shifting optic, the four-quadrant phase mask
(FQPM) coronagraphs relies on FFT propagation. Another unique complication of the FQPM coronagraph class is its
array alignment requirement between the FFT result in the intermediate focal plane with the center of the phase mask.
This is done using a virtual optic called an ‘FQPM FFT aligner’ as follows:

optsys = poppy.OpticalSystem()
optsys.add_pupil(poppy.CircularAperture(radius=3, pad_factor=1.5)) #pad display area by 50%
optsys.add_pupil(poppy.FQPM_FFT_aligner()) # ensure the PSF is centered on the FQPM cross hairs
optsys.add_image() # empty image plane for "before the mask"
optsys.add_image(poppy.IdealFQPM(wavelength=2e-6))
optsys.add_pupil(poppy.FQPM_FFT_aligner(direction='backward')) # undo the alignment tilt after going␣
→˓back to the pupil plane
optsys.add_pupil(poppy.CircularAperture(radius=3)) # Lyot mask - change radius if desired
optsys.add_detector(pixelscale=0.01, fov_arcsec=10.0)

psf = optsys.calc_psf(wavelength=2e-6, display_intermediates=True)

84 Chapter 7. Efficient Lyot coronagraph propagation

poppy Documentation, Release 0.9.0

7.6 FQPM on an Obscured Aperture (demonstrates compound op-
tics)

As a variation, we can add a secondary obscuration. This can be done by creating a compound optic consisting of
the circular outer aperture plus an opaque circular obscuration. The latter we can make using the InverseTransmission
class.

primary = poppy.CircularAperture(radius=3)
secondary = poppy.InverseTransmission(poppy.CircularAperture(radius=0.5))
aperture = poppy.CompoundAnalyticOptic(opticslist = [primary, secondary])

optsys = poppy.OpticalSystem()
optsys.add_pupil(aperture)
optsys.add_pupil(poppy.FQPM_FFT_aligner()) # ensure the PSF is centered on the FQPM cross hairs
optsys.add_image(poppy.IdealFQPM(wavelength=2e-6))
optsys.add_pupil(poppy.FQPM_FFT_aligner(direction='backward')) # undo the alignment tilt after going␣
→˓back to the pupil plane
optsys.add_pupil(poppy.CircularAperture(radius=3)) # Lyot mask - change radius if desired
optsys.add_detector(pixelscale=0.01, fov_arcsec=10.0)

optsys.display()

psf = optsys.calc_psf(wavelength=2e-6, display_intermediates=True)

7.6. FQPM on an Obscured Aperture (demonstrates compound optics) 85

poppy Documentation, Release 0.9.0

86 Chapter 7. Efficient Lyot coronagraph propagation

CHAPTER 8

Fresnel Propagation

POPPY now includes support for Fresnel propagation as well as Fraunhofer. Particular credit is due to Ewan Douglas
for initially developing this code. This substantial upgrade to poppy enables calculation of wavefronts propagated
arbitrary distances in free space, for applications such as Gaussian beam propagation and modeling of Talbot effect
mixing between phase and amplitude aberrations.

Caution: The Fresnel code has been cross-checked against the PROPER library by John Krist to verify accu-
racy and correctness of output. A test suite is provided along with poppy in the tests subdirectory and users are
encouraged to run these tests themselves.

8.1 Usage of the Fresnel code

The API has been kept as similar as possible to the original Fraunhofer mode of poppy. There are FresnelWavefront
and FresnelOpticalSystem classes, which can be used for the most part similar to the Wavefront and
OpticalSystem classes.

Users are encouraged to consult the Jupyter notebook Fresnel_Propagation_Demo for examples of how to use the
Fresnel code.

8.1.1 Key Differences from Fraunhofer mode

The Fresnel propagation API necessarily differs in several ways from the original Fraunhofer API in poppy. Let’s
highlight a few of the key differences. First, when we define a Fresnel wavefront, the first argument specifies the
desired diameter of the wavefront, and must be given as an astropy.Quantity of dimension length:

import astropy.units as u
wf_fresnel = poppy.FresnelWavefront(0.5*u.m,wavelength=2200e-9,npix=npix,oversample=4)
versus:
wf_fraunhofer = poppy.Wavefront(diam=0.5, wavelength=2200e-9,npix=npix,oversample=4)

87

http://blogs.bu.edu/douglase/
http://proper-library.sourceforge.net
https://github.com/spacetelescope/poppy/blob/master/notebooks/Fresnel_Propagation_Demo.ipynb
http://docs.astropy.org/en/stable/units/

poppy Documentation, Release 0.9.0

The Fresnel code relies on the Quantity framework to enforce consistent units and dimensionality. You can use any
desired unit of length, from nanometers to parsecs and beyond, and the code will convert units appropriately. This
also shows up when requesting an optical propagation. Rather than having implicit transformations between pupil and
image planes, for Fresnel propagation a specific distance must be given. This too is a Quantity giving a length.

wf.propagate_fresnel(5*u.km)

The parameters of a Gaussian beam may be modified (making it converging or diverging) by adding optical power. In
poppy this is represented with the QuadraticLens class. This is so named because it applies a purely quadratic phase
term, i.e. representative of a parabolic mirror or a lens considered in the paraxial approximation. Right now, only the
Fresnel QuadraticLens class will actually cause the Gaussian beam parameters to change. You won’t get that effect
by adding wavefront error with some other OpticalElement class.

8.1.2 Using the FreselOpticalSystem class

Just like the OpticalSystem serves as a high-level container for OpticalElement instances in Fraunhofer prop-
agation, the FresnelOpticalSystem serves the same purpose in Fresnel propagation. Note that when adding an
OpticalElement to the FresnelOpticalSystem, you use the function add_optic() and must specify a physical dis-
tance separating that optic from the previous optic, again as an astropy.Quantity of dimension length. This replaces
the add_image and add_pupil methods used in Fraunhofer propagation. For example:

osys = poppy.FresnelOpticalSystem(pupil_diameter = 0.05*u.m, npix = npix, beam_ratio = 0.25)
osys.add_optic(poppy.CircularAperture(radius=0.025))
osys.add_optic(poppy.ScalarTransmission(), distance = 10*u.m)

If you want the output from a Fresnel calculation to have a particular pixel sampling, you may either (1) adjust the
npix and oversample or beam_ratio parameters so that the propagation output naturally has the desired sampling, or
(2) add a Detector instance as the last optical plane to define the desired sampling, in which case the output wavefront
will be interpolated onto the desired sampling and number of pixels. Note that when specifying Detectors in a Fresnel
system you must use physical sizes of pixels, e.g. 10*u.micron/u.pixel, and NOT angular sizes in arcsec/pixel like
in a regular Fraunhofer OpticalSystem. For instance:

osys.add_detector(pixelscale=20*u.micron/u.pixel, fov_pixels=512)

8.1.3 Example Jupyter Notebooks

Fresnel tutorial notebook

For more details and examples of code usage, consult the Jupyter notebook Fresnel_Propagation_Demo. In addition
to details on code usage, this includes a worked example of a Fresnel model of the Hubble Space Telescope.

A non-astronomical example

A worked example of a compound microscope in POPPY is available here, reproducing the microscope example case
provided in the PROPER manual.

8.1.4 Fresnel calculations with Physical units

A subclass, PhysicalFresnelWavefront, enables calculations using wavefronts scaled to physical units, i.e.
volts/meter for electric field and watts for total intensity (power). This code was developed and contributed by Phillip

88 Chapter 8. Fresnel Propagation

http://docs.astropy.org/en/stable/units/
https://github.com/spacetelescope/poppy/blob/master/notebooks/Fresnel_Propagation_Demo.ipynb
https://github.com/douglase/poppy_example_notebooks/blob/master/Fresnel/Microscope_Example.ipynb
https://github.com/DaPhil
https://github.com/DaPhil

poppy Documentation, Release 0.9.0

Springer.

See this notebook for examples and further discussion.

8.2 References

The following references were helpful in the development of this code.

• Goodman, Fourier Optics

• Lawrence, G. N. (1992), Optical Modeling, in Applied Optics and Optical Engineering., vol. XI,
edited by R. R. Shannon and J. C. Wyant., Academic Press, New York.

• IDEX Optics and Photonics(n.d.), Gaussian Beam Optics

• Krist, J. E. (2007), PROPER: an optical propagation library for IDL
vol. 6675, p. 66750P-66750P-9.

• Andersen, T., and A. Enmark (2011), Integrated Modeling of Telescopes, Springer Science & Business Media.

8.2. References 89

https://github.com/DaPhil
https://github.com/DaPhil
https://github.com/spacetelescope/poppy/blob/master/notebooks/Physical%20Units%20Demo.ipynb
http://www.amazon.com/Introduction-Fourier-Optics-Joseph-Goodman/dp/0974707724
https://marketplace.idexop.com/store/SupportDocuments/All_About_Gaussian_Beam_OpticsWEB.pdf
http://dx.doi.org/10.1117/12.731179
http://www.amazon.com/Integrated-Modeling-Telescopes-Astrophysics-Science/dp/1461401488

poppy Documentation, Release 0.9.0

90 Chapter 8. Fresnel Propagation

CHAPTER 9

Options

9.1 Output PSF Normalization

Output PSFs can be normalized in different ways, based on the normalization keyword to calc_psf. The options
are:

• normalize="first": The wavefront is normalized to total intensity 1 over the entrance pupil. If there are
obstructions downstream of the entrance pupil (e.g. coronagraph masks) then the output PSF intensity will be <
1.

• normalize="last": The output PSF’s integrated total intensity is normalized to 1.0, over whatever FOV that
PSF has. (Note that this

• normalize="exit_pupil": The wavefront is normalized to total intensity 1 at the exit pupil, i.e. the last pupil
in the optical system. This means that the output PSF will have total intensity 1.0 if integrated over an arbitrarily
large aperture. The total intensity over any finite aperture will be some number less than one. In other words,
this option is equivalent to saying “Normalize the PSF to have integrated intensity 1 over an infinite aperture.”

9.2 Logging

As noted on the Examples page, Poppy uses the Python logging mechanism for log message display. The default
“info” level provides a modest amount of insight into the major steps of a calculation; the “debug” level provides an
exhaustive and lengthy description of everything you could possibly want to know. You can switch between these like
so:

import logging
logging.basicConfig(level=logging.INFO)
logging.basicConfig(level=logging.DEBUG)

See the python logging docs for more information and extensive options for directing log output to screen or file.

91

https://docs.python.org/2/library/logging.html

poppy Documentation, Release 0.9.0

9.3 Configuration

Poppy makes use of the Astropy configuration system to store settings persistently between sessions. These settings
are stored in a file in the user’s home directory, for instance ~/.astropy/config/poppy.cfg. Edit this text file to
adjust settings.

Setting Description De-
fault

use_multiprocessing Should PSF calculations run in parallel using multiple processors? False
n_processes Maximum number of additional worker processes to spawn. 4
use_fftw Should the pyFFTW library be used (if it is present)? True
au-
tosave_fftw_wisdom

Should POPPY automatically save and reload FFTW ‘wisdom’ (i.e. timing mea-
surements of different FFT variants)

True

de-
fault_image_display_fov

Default display field of view for PSFs, in arcsec 5

de-
fault_logging_level

Default verbosity of logging to Python’s logging framework INFO

enable_speed_tests Enable additional verbose logging of execution timing False
enable_flux_tests Enable additional verbose logging of flux conservation tests False

92 Chapter 9. Options

http://astropy.readthedocs.org/en/stable/config/index.html

CHAPTER 10

Extending POPPY by defining your own optics and instruments

POPPY is designed to make it straightforward to implement your own custom optics classes, which will interoper-
ate with all the built-in classes. Conceptually all that is needed is defining the get_transmission and/or get_opd
functions for each new class.

Many examples of this can be found in poppy/optics.py

10.1 Defining a custom optic from an analytic function

The complex phasor of each optic is calculated automatically from that optic’s transmission (i.e. the throughput for
the amplitude of the electromagnetic field) and optical path difference (i.e. the propagation delay in the phase of the
electromagnetic field). Both of these quantities may vary as a function of position across the optic, and as a function
of wavelength.

AnalyticOpticalElement subclasses must implement either or both of the functions get_transmission() and
get_opd(). Each takes a Wavefront as its sole argument besides self. All other necessary parameters should be
set up as part of the __init__ function defining your optic.

Note: This is new in version 0.5 of poppy; prior versions used a single function getPhasor to handle computing
the entire complex phasor in one step including both the transmission and OPD components. Version 0.5 now pro-
vides better flexibility and extensibility by allowing the transmission and OPD components to be defined in separate
functions, and automatically takes care of combining them to produce the complex phasor behind the scenes.

Example skeleton code:

class myCustomOptic(poppy.AnalyticOpticalElement):
def __init__(self, *args, **kwargs):

""" If your optic has adjustible parameters, then save them as attributes here """
poppy.AnalyticOpticalElement.__init__(**kwargs)

def get_opd(self,wave):

(continues on next page)

93

poppy Documentation, Release 0.9.0

(continued from previous page)

y, x = self.get_coordinates(wave)
opd = some_function(x,y, wave.wavelength, self)
return opd

def get_transmission(self, wave):
y, x = self.get_coordinates(wave)
transmission = other_function(x,y, wave.wavelength, self)
return transmission

behind the scenes poppy will calculate:
phasor = transmission = np.exp(1.j * 2 * np.pi / wave.wavelength * opd)

Note the use of the self.get_coordinates() helper function, which returns y and x arrays giving the coordinates
as appopriate for the sampling of the supplied wave object (by default in units of meters for most optics such as pupil
planes, in arcseconds for image plane optics). You can use these coordinates to calculate the transmission and path
delay appropriate for your optic. If your optic has wavelength dependent properties, access the wave.wavelength
property to determine the the appropriate wavelength; this will be in units of meters.

The get_coordinates() function automatically includes support for offset shifts and rotations for any analytic op-
tic: just add a shift_x, shift_y or rotation attribute for your optic object, and the coordinates will be shifted
accordingly. These parameters should be passed to poppy.AnalyticOpticalElement.__init__ via the **kwargs
mechanism.

10.2 Defining a custom optic from a FITS file

Of course, any arbitrary optic can be represented in discrete form in 2D arrays and then read into poppy using the
FITSOpticalElement class. The physical parameters of the array are defined using fitsheaders.

The transmission array should contain floating point values between 0.0 and 1.0. These represent the local transmission
of the electric field amplitude, not the total intensity.

The OPD array should contain floating point numbers (positive and negative) representing a path delay in some phys-
ical units. The unit must be specified using the BUNIT keyword; allowed BUNITs are ‘meter’, ‘micron’, ‘nanometer’
and their standard metric abbreviations.

If you are using both an OPD and transmission together to define your optics, the arrays must have the same size.

The spatial or angular scale of these arrays must also be indicated by a FITS header keyword. By default, poppy
checks for the keyword PIXSCALE for image plane pixel scale in arcseconds/pixel or PUPLSCAL for pupil plane scale
in meters/pixel. However if your FITS file uses some alternate keyword, you can specify that keyword name with the
pupilscale= argument in the call to the FITSOpticalElement constructor, i.e.:

myoptic = poppy.FITSOpticalElement(transmission='transfile.fits', opd='opdfile.fits', pupilscale=
→˓"PIXELSCL")

Lastly if there is no such keyword available, you can specify the numerical scale directly via the same keyword by
providing a float instead of a string:

myoptic = poppy.FITSOpticalElement(transmission='transfile.fits', opd='opdfile.fits', pupilscale=0.020)

94 Chapter 10. Extending POPPY by defining your own optics and instruments

https://docs.python.org/3/library/wave.html#module-wave

poppy Documentation, Release 0.9.0

10.3 Creating a custom instrument

POPPY provides an Instrument class to simplify certain types of calculations. For example, the WebbPSF project
uses Instrument subclasses to provide selectable filters, pupil masks, and image masks for the instruments on JWST.

Any calculation you can set up with a bare POPPY OpticalSystem can be wrapped with an Instrument to present
a friendlier API to end users. The Instrument will hold the selected instrument configuration and calculation
options, passing them to a private method _getOpticalSystem() which implementors must override to build the
OpticalSystem for the PSF calculation.

The general notion of an Instrument is that it consists of both

1. An optical system implemented in the usual fashion, optionally with several configurations such as selectable
image plane or pupil plane stops or other adjustable properties, and

2. Some defined spectral bandpass(es) such as selectable filters. If the pysynphot module is available, it will be
used to perform careful synthetic photometry of targets with a given spectrum observed in the given bandpass.
If pysynphot is not installed, the code will fall back to a much simpler model assuming constant number of
counts vs wavelength.

Configurable options such as optical masks and filters are specified as properties of the instrument instance; an appro-
priate OpticalSystem will be generated when the calc_psf() method is called.

The Instrument is fairly complex, and has a lot of internal submethods used to modularize the calculation and
allow subclassing and customization. For developing your own instrument classes, it may be useful to start with the
instrument classes in WebbPSF as worked examples.

You will at a minimum want to override the following class methods:

• _getOpticalSystem

• _getFilterList

• _getDefaultNLambda

• _getDefaultFOV

• _getFITSHeader

For more complicated systems you may also want to override:

• _validateConfig

• _getSynphotBandpass

• _applyJitter

An Instrument will get its configuration from three places:

(1) The __init__ method of the Instrument subclass

During __init__, the subclass can set important attributes like pixelscale, add a custom pupil optic and
OPD map, and set a default filter. (n.b. The current implementation may not do what you expect if you are
accustomed to calling the superclass’ __init__ at the end of your subclass’ __init__ method. Look at the
implementation in poppy/instrument.py for guidance.)

(2) The options dictionary attribute on the Instrument subclass

The options dictionary allows you to set a subset of options that are loosely considered to be independent of the
instrument configuration (e.g. filter wheels) and of the particular calculation. This includes offsetting the source
from the center of the FOV, shifting the pupil, applying jitter to the final image, or forcing the parity of the final
output array.

10.3. Creating a custom instrument 95

poppy Documentation, Release 0.9.0

Users are free to introduce new options by documenting an option name and retrieving the value at an appropriate
point in their implementation of _getOpticalSystem() (to which the options dictionary is passed as keyword
argument options).

(3) The calc_psf() method of the Instrument subclass

For interoperability, it’s not recommended to change the function signature of calc_psf(). However, it is an
additional way that users will pass configuration information into the calculation, and a starting point for more
involved customization that cannot be achieved by overriding one of the private methods above.

Be warned that the poppy.Instrument API evolved in tandem with WebbPSF, and certain things are subject to change
as we extend it to use cases beyond the requirements of WebbPSF.

96 Chapter 10. Extending POPPY by defining your own optics and instruments

CHAPTER 11

POPPY Class Listing

The key classes for POPPY are OpticalSystem and the various OpticalElement classes (of which there are many).
There is also a Wavefront class that is used internally, but users will rarely need to instantiate that directly. Results
are returned as FITS files, specifically astropy.io.fits.HDUList objects.

OpticalSystem is in essence a container for OpticalElement instances, which handles creating input wavefronts,
propagating them through the individual optics, and then combining the results into a broadband output point spread
function.

The Instrument class provides a framework for developing high-level models of astronomical instruments. An
OpticalSystem does not include any information about spectral bandpasses, filters, or light source properties, it
just propagates whatever specified list of wavelengths and weights it’s provided with. The Instrument class provides
the machinery for handling filters and sources to generate weighted source spectra, as well as support for configurable
instruments with selectable mechanisms, and system-level impacts on PSFs such as pointing jitter.

Note that the Instrument class should not be used directly but rather is subclassed to implement the details of your
particular instrument. See its class documentation for more details.

11.1 Optical Systems

• OpticalSystem is the fundamental optical system class, that propagates Wavefront objects between optics
using Fourier transforms.

• SemiAnalyticCoronagraph implements the semi-analytic coronagraphic propagation algorithm of Soummer
et al.

• MatrixFTCoronagraph enables efficient propagation calculations for Lyot coronagraphs with diaphragm-type
focal plane masks, relevant to the WFIRST coronagraph and described by Zimmerman et al. (2016).

11.2 Optical Elements

• OpticalElement is the fundamental building block

97

poppy Documentation, Release 0.9.0

• FITSOpticalElement implements optics defined numerically on discrete grids read in from FITS files

• AnalyticOpticalElement implements optics defined analytically on any arbitrary sampling. There are many
of these.

– ScalarTransmission is a simple floating-point throughput factor.

– CompoundAnalyticOptic allows multiple analytic optics to be merged into one container object

• Pupil plane analytic optics include:

– CircularAperture

– SquareAperture

– RectangleAperture

– HexagonAperture

– MultiHexagonAperture

– NgonAperture

– SecondaryObscuration

– ThinLens

– FQPM_FFT_aligner

• Image plane analytic optics include:

– RectangularFieldStop

– SquareFieldStop

– CircularOcculter

– BarOcculter

– BandLimitedCoron

– IdealFQPM

• InverseTransmission allows any optic, whether analytic or discrete, to be flipped in sign, a la the Babinet
principle.

• Rotation represents a rotation of the axes of the wavefront, for instance to change coordinate systems be-
tween two optics that are rotated with respect to one another. The axis of rotation must be the axis of optical
propagation.

• _poppy.CoordinateInversion represents a flip in orientation of the X or Y axis, or both at once.

• Detector represents a detector with some fixed sampling and pixel scale.

11.3 Wavefront Error Optical Elements

• poppy.wfe.ZernikeWFE

• poppy.wfe.SineWaveWFE

98 Chapter 11. POPPY Class Listing

CHAPTER 12

API Reference

12.1 poppy Package

Physical Optics Propagation in PYthon (POPPY)

POPPY is a Python package that simulates physical optical propagation including diffraction. It implements a flexible
framework for modeling Fraunhofer (far-field) diffraction and point spread function formation, particularly in the
context of astronomical telescopes. POPPY was developed as part of a simulation package for JWST, but is more
broadly applicable to many kinds of imaging simulations.

Developed by Marshall Perrin and colleagues at STScI, for use simulating the James Webb Space Telescope and other
NASA missions.

Documentation can be found online at https://poppy-optics.readthedocs.io/

12.1.1 Functions

display_psf(HDUlist_or_filename[, ext, . . .]) Display nicely a PSF from a given hdulist or filename
display_psf_difference([. . .]) Display nicely the difference of two PSFs from given

files
display_ee([HDUlist_or_filename, ext, . . .]) Display Encircled Energy curve for a PSF
measure_ee([HDUlist_or_filename, ext, . . .]) measure encircled energy vs radius and return as an in-

terpolator
measure_radius_at_ee([HDUlist_or_filename, . . .]) measure encircled energy vs radius and return as an in-

terpolator Returns a function object which when called
returns the radius for a given Encircled Energy.

display_profiles([HDUlist_or_filename, ext, . . .]) Produce two plots of PSF radial profile and encircled
energy

radial_profile([hdulist_or_filename, ext, . . .]) Compute a radial profile of the image.
measure_radial([HDUlist_or_filename, ext, . . .]) measure azimuthally averaged radial profile of a PSF.

Continued on next page

99

https://poppy-optics.readthedocs.io/

poppy Documentation, Release 0.9.0

Table 1 – continued from previous page
measure_fwhm(HDUlist_or_filename[, ext, . . .]) Improved version of measuring FWHM, without any

binning of image data.
measure_sharpness([HDUlist_or_filename, ext]) Compute image sharpness, the sum of pixel squares.
measure_centroid([HDUlist_or_filename, ext, . . .]) Measure the center of an image via center-of-mass
measure_strehl([HDUlist_or_filename, ext, . . .]) Measure Strehl for a PSF
measure_anisotropy([HDUlist_or_filename, . . .])
specFromSpectralType(sptype[, return_list, . . .]) Get Pysynphot Spectrum object from a user-friendly

spectral type string.
fixed_sampling_optic(optic, wavefront[, . . .]) Convert a variable-sampling AnalyticOpticalElement to

a fixed-sampling ArrayOpticalElement

display_psf

poppy.display_psf(HDUlist_or_filename, ext=0, vmin=1e-07, vmax=0.1, scale=’log’, cmap=None,
title=None, imagecrop=None, adjust_for_oversampling=False, normal-
ize=’None’, crosshairs=False, markcentroid=False, colorbar=True, color-
bar_orientation=’vertical’, pixelscale=’PIXELSCL’, ax=None, return_ax=False,
interpolation=None, cube_slice=None)

Display nicely a PSF from a given hdulist or filename

This is extensively configurable. In addition to making an attractive display, for interactive usage this function
provides a live display of the pixel value at a given (x,y) as you mouse around the image.

HDUlist_or_filename
[fits.hdulist or string] FITS file containing image to display.

ext
[int] FITS extension. default = 0

vmin, vmax
[float] min and max for image display scaling

scale
[str] ‘linear’ or ‘log’, default is log

cmap
[matplotlib.cm.Colormap instance or None] Colormap to use. If not given, taken from user’s poppy.conf.
cmap_sequential (Default: ‘gist_heat’).

title
[string, optional] Set the plot title explicitly.

imagecrop
[float] size of region to display (default is whole image)

adjust_for_oversampling
[bool] rescale to conserve surface brightness for oversampled PSFs? (Making this True conserves surface
brightness but not total flux.) Default is False, to conserve total flux.

normalize
[string] set to ‘peak’ to normalize peak intensity =1, or to ‘total’ to normalize total flux=1. Default is no
normalization.

crosshairs
[bool] Draw a crosshairs at the image center (0, 0)? Default: False.

markcentroid
[bool] Draw a crosshairs at the image centroid location? Centroiding is computed with the JWST-standard
moving box algorithm. Default: False.

100 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

colorbar
[bool] Draw a colorbar on the image?

colorbar_orientation
[‘vertical’ (default) or ‘horizontal’] How should the colorbar be oriented? (Note: Updating a plot and
changing the colorbar orientation is not supported. When replotting in the same axes, use the same colorbar
orientation.)

pixelscale
[str or float] if str, interpreted as the FITS keyword name for the pixel scale in arcsec/pixels. if float, used
as the pixelscale directly.

ax
[matplotlib.Axes instance] Axes to display into.

return_ax
[bool] Return the axes to the caller for later use? (Default: False) When True, this function returns a
matplotlib.Axes instance, or a tuple of (ax, cb) where the second is the colorbar Axes.

interpolation
[string] Interpolation technique for PSF image. Default is None, meaning it is taken from matplotlib’s
image.interpolation rcParam.

cube_slice
[int or None] if input PSF is a datacube from calc_datacube, which slice of the cube should be displayed?

display_psf_difference

poppy.display_psf_difference(hdulist_or_filename1=None, HDUlist_or_filename2=None, ext1=0,
ext2=0, vmin=None, vmax=0.0001, title=None, imagecrop=None,
adjust_for_oversampling=False, crosshairs=False, cmap=None, col-
orbar=True, colorbar_orientation=’vertical’, print_=False, ax=None,
return_ax=False, normalize=False, normalize_to_second=False)

Display nicely the difference of two PSFs from given files

The two files may be FITS files on disk or FITS HDUList objects in memory. The two must have the same
shape and size.

hdulist_or_filename1, HDUlist_or_filename2
[fits.HDUlist or string] FITS files containing images to difference

ext1, ext2
[int] FITS extension. default = 0

vmin, vmax
[float] Image intensity scaling min and max.

title
[string, optional] Title for plot.

imagecrop
[float] Size of region to display (default is whole image).

adjust_for_oversampling
[bool] Rescale to conserve surface brightness for oversampled PSFs? (Making this True conserves surface
brightness but not total flux.) Default is False, to conserve total flux.

crosshairs
[bool] Plot crosshairs over array center?

12.1. poppy Package 101

poppy Documentation, Release 0.9.0

cmap
[matplotlib.cm.Colormap instance or None] Colormap to use. If not given, use standard gray colormap.

colorbar
[bool] Draw a colorbar on the image?

colorbar_orientation
[‘vertical’ (default) or ‘horizontal’] How should the colorbar be oriented? (Note: Updating a plot and
changing the colorbar orientation is not supported. When replotting in the same axes, use the same colorbar
orientation.)

print_
[bool] Print RMS difference value for the images? (Default: False)

ax
[matplotlib.Axes instance] Axes to display into.

return_ax
[bool] Return the axes to the caller for later use? (Default: False) When True, this function returns a
matplotlib.Axes instance, or a tuple of (ax, cb) where the second is the colorbar Axes.

normalize
[bool] Display (difference image)/(mean image) instead of just the difference image. Mutually exclusive
to normalize_to_second. (Default: False)

normalize_to_second
[bool] Display (difference image)/(second image) instead of just the difference image. Mutually exclusive
to normalize. (Default: False)

display_ee

poppy.display_ee(HDUlist_or_filename=None, ext=0, overplot=False, ax=None, mark_levels=True,
**kwargs)

Display Encircled Energy curve for a PSF

The azimuthally averaged encircled energy is plotted as a function of radius.

HDUlist_or_filename
[fits.HDUlist or string] FITS file containing image to display encircled energy for.

ext
[bool] FITS extension to use. Default is 0

overplot
[bool] whether to overplot or clear and produce an new plot. Default false

ax
[matplotlib Axes instance] axis to plot into. If not provided, current axis will be used.

mark_levels
[bool] If set, mark and label on the plots the radii for 50%, 80%, 95% encircled energy. Default is True

measure_ee

poppy.measure_ee(HDUlist_or_filename=None, ext=0, center=None, binsize=None, normalize=’None’)
measure encircled energy vs radius and return as an interpolator

Returns a function object which when called returns the Encircled Energy inside a given radius, for
any arbitrary desired radius smaller than the image size.

102 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

HDUlist_or_filename
[string] Either a fits.HDUList object or a filename of a FITS file on disk

ext
[int] Extension in that FITS file

center
[tuple of floats] Coordinates (x,y) of PSF center. Default is image center.

binsize:
size of step for profile. Default is pixel size.

normalize
[string]

set to ‘peak’ to normalize peak intensity =1, or to ‘total’ to normalize total flux=1. Default is no
normalization (i.e. retain whatever normalization was used in computing the PSF itself)

encircled_energy: function
A function which will return the encircled energy interpolated to any desired radius.

>>> ee = measure_ee("someimage.fits")
>>> print "The EE at 0.5 arcsec is ", ee(0.5)

measure_radius_at_ee

poppy.measure_radius_at_ee(HDUlist_or_filename=None, ext=0, center=None, binsize=None, normal-
ize=’None’)

measure encircled energy vs radius and return as an interpolator Returns a function object which when called
returns the radius for a given Encircled Energy. This is the inverse function of measure_ee

HDUlist_or_filename
[string] Either a fits.HDUList object or a filename of a FITS file on disk

ext
[int] Extension in that FITS file

center
[tuple of floats] Coordinates (x,y) of PSF center. Default is image center.

binsize:
size of step for profile. Default is pixel size.

normalize
[string] set to ‘peak’ to normalize peak intensity =1, or to ‘total’ to normalize total flux=1. Default is no
normalization (i.e. retain whatever normalization was used in computing the PSF itself)

radius: function
A function which will return the radius of a desired encircled energy.

>>> ee = measure_radius_at_ee("someimage.fits")
>>> print "The EE is 50% at {} arcsec".format(ee(0.5))

12.1. poppy Package 103

poppy Documentation, Release 0.9.0

display_profiles

poppy.display_profiles(HDUlist_or_filename=None, ext=0, overplot=False, title=None, **kwargs)
Produce two plots of PSF radial profile and encircled energy

See also the display_ee function.

HDUlist_or_filename1,2
[fits.HDUlist or string] FITS files containing image to difference

ext
[bool] FITS extension to use. Default is 0

overplot
[bool] whether to overplot or clear and produce an new plot. Default false

title
[string, optional] Title for plot

radial_profile

poppy.radial_profile(hdulist_or_filename=None, ext=0, ee=False, center=None, stddev=False, bin-
size=None, maxradius=None, normalize=’None’, pa_range=None)

Compute a radial profile of the image.

This computes a discrete radial profile evaluated on the provided binsize. For a version interpolated onto a
continuous curve, see measure_radial().

Code taken pretty much directly from pydatatut.pdf

hdulist_or_filename
[string] FITS HDUList object or path to a FITS file. NaN values in the FITS data array are treated as
masked and ignored in computing bin statistics.

ext
[int] Extension in FITS file

ee
[bool] Also return encircled energy (EE) curve in addition to radial profile?

center
[tuple of floats] Coordinates (x,y) of PSF center, in pixel units. Default is image center.

binsize
[float] size of step for profile. Default is pixel size.

stddev
[bool] Compute standard deviation in each radial bin, not average?

normalize
[string] set to ‘peak’ to normalize peak intensity =1, or to ‘total’ to normalize total flux=1. Default is no
normalization (i.e. retain whatever normalization was used in computing the PSF itself)

pa_range
[list of floats, optional] Optional specification for [min, max] position angles to be included in the radial
profile. I.e. calculate that profile only for some wedge, not the full image. Specify the PA in degrees
counterclockwise from +Y axis=0. Note that you can specify ranges across zero using negative numbers,
such as pa_range=[-10,10]. The allowed PA range runs from -180 to 180 degrees.

results
[tuple] Tuple containing (radius, profile) or (radius, profile, EE) depending on what is requested. The

104 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

radius gives the center radius of each bin, while the EE is given inside the whole bin so you should use
(radius+binsize/2) for the radius of the EE curve if you want to be as precise as possible.

measure_radial

poppy.measure_radial(HDUlist_or_filename=None, ext=0, center=None, binsize=None)
measure azimuthally averaged radial profile of a PSF.

Returns a function object which when called returns the mean value at a given radius.

HDUlist_or_filename
[string] what it sounds like.

ext
[int] Extension in FITS file

center
[tuple of floats] Coordinates (x,y) of PSF center. Default is image center.

binsize:
size of step for profile. Default is pixel size.

radial_profile: function
A function which will return the mean PSF value at any desired radius.

>>> rp = measure_radial("someimage.fits")
>>> radius = np.linspace(0, 5.0, 100)
>>> plot(radius, rp(radius), label="PSF")

measure_fwhm

poppy.measure_fwhm(HDUlist_or_filename, ext=0, center=None, plot=False, threshold=0.1)
Improved version of measuring FWHM, without any binning of image data.

Method: Pick out the image pixels which are above some threshold relative to the peak intensity, then fit a
Gaussian to those. Infer the FWHM based on the width of the Gaussian.

HDUlist_or_filename
[string] what it sounds like.

ext
[int] Extension in FITS file

center
[tuple of floats] Coordinates (x,y) of PSF center, in pixel units. Default is image center.

threshold
[float] Fraction relative to the peak pixel that is used to select the bright peak pixels used in fitting the
Gaussian. Default is 0.1, i.e. pixels brighter that 0.1 of the maximum will be included. This is chosen
semi-arbitrarily to include most of the peak but exclude the first Airy ring for typical cases.

plot
[bool] Display a diagnostic plot.

fwhm
[float] FWHM in arcseconds

12.1. poppy Package 105

poppy Documentation, Release 0.9.0

measure_sharpness

poppy.measure_sharpness(HDUlist_or_filename=None, ext=0)
Compute image sharpness, the sum of pixel squares.

See Makidon et al. JWST-STScI-001157 for a discussion of this image metric and its relationship to noise
equivalent pixels.

HDUlist_or_filename, ext
[string, int] Same as above

measure_centroid

poppy.measure_centroid(HDUlist_or_filename=None, ext=0, slice=0, boxsize=20, verbose=False,
units=’pixels’, relativeto=’origin’, **kwargs)

Measure the center of an image via center-of-mass

The centroid method used is the floating-box center of mass algorithm by Jeff Valenti et al., which has been
adopted for JWST target acquisition measurements on orbit. See JWST technical reports JWST-STScI-001117
and JWST-STScI-001134 for details.

HDUlist_or_filename
[string] Either a fits.HDUList object or a filename of a FITS file on disk

ext
[int] Extension in that FITS file

slice
[int, optional] If that extension is a 3D datacube, which slice (plane) of that datacube to use

boxsize
[int] Half box size for centroid

relativeto
[string] either ‘origin’ for relative to pixel (0,0) or ‘center’ for relative to image center. Default is ‘origin’

units
[string] either ‘pixels’ for position in pixels or ‘arcsec’ for arcseconds. Relative to the relativeto parameter
point in either case.

CoM
[array_like] [Y, X] coordinates of center of mass.

measure_strehl

poppy.measure_strehl(HDUlist_or_filename=None, ext=0, slice=0, center=None, display=True, ver-
bose=True, cache_perfect=False)

Measure Strehl for a PSF

NOTE - deprecated / removed function. Moved to webbpsf package instead.

This stub is just here to provide information on that transfer, and will be removed in a future version of poppy.

measure_anisotropy

poppy.measure_anisotropy(HDUlist_or_filename=None, ext=0, slice=0, boxsize=50)

106 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

specFromSpectralType

poppy.specFromSpectralType(sptype, return_list=False, catalog=None)
Get Pysynphot Spectrum object from a user-friendly spectral type string.

Given a spectral type such as ‘A0IV’ or ‘G2V’, this uses a fixed lookup table to determine an appropriate spectral
model from Castelli & Kurucz 2004 or the Phoenix model grids. Depends on pysynphot and CDBS. This is just
a convenient access function.

catalog: str
‘ck04’ for Castelli & Kurucz 2004, ‘phoenix’ for Phoenix models. If not set explicitly, the code will
check if the phoenix models are present inside the $PYSYN_CDBS directory. If so, those are the default;
otherwise, it’s CK04.

fixed_sampling_optic

poppy.fixed_sampling_optic(optic, wavefront, oversample=2)
Convert a variable-sampling AnalyticOpticalElement to a fixed-sampling ArrayOpticalElement

For a given input optic this produces an equivalent output optic stored in simple arrays rather than created each
time via function calls.

If you know a priori the desired sampling will remain constant for some application, and don’t need any of the
other functionality of the AnalyticOpticalElement machinery with get_opd and get_transmission functions, you
can save time by setting the sampling to a fixed value and saving arrays computed on that sampling.

Also, you can use this to evaluate any optic on a finer sampling scale and then bin the results to the desired scale,
using the so-called gray-pixel approximation. (i.e. the value for each output pixel is computed as the average of
N*N finer pixels in an intermediate array.)

optic
[poppy.AnalyticOpticalElement] Some optical element

wave
[poppy.Wavefront] A wavefront to define the desired sampling pixel size and number.

oversample
[int] Subpixel sampling factor for “gray pixel” approximation: the optic will be evaluated on a finer pixel
scale and then binned down to the desired sampling.

new_array_optic
[poppy.ArrayOpticalElement] A version ofthe input optic with fixed arrays for OPD and transmission.

12.1.2 Classes

Instrument([name]) A generic astronomical instrument, composed of
Wavefront([wavelength, npix, dtype, diam, . . .]) Wavefront in the Fraunhofer approximation: a

monochromatic wavefront that can be transformed be-
tween pupil and image planes only, not to intermediate
planes

OpticalSystem([name, verbose, oversample, . . .]) A class representing a series of optical elements, either
Pupil, Image, or Detector planes, through which light
can be propagated.

Continued on next page

12.1. poppy Package 107

poppy Documentation, Release 0.9.0

Table 2 – continued from previous page
CompoundOpticalSystem([optsyslist, name]) A concatenation of two or more optical systems, acting

as a single larger optical system.
OpticalElement([name, verbose, planetype, . . .]) Base class for all optical elements, whether from FITS

files or analytic functions.
ArrayOpticalElement([opd, transmission, . . .]) Defines an arbitrary optic, based on amplitude transmis-

sion and/or OPD given as numpy arrays.
FITSOpticalElement([name, transmission, . . .]) Defines an arbitrary optic, based on amplitude transmis-

sion and/or OPD FITS files.
Rotation([angle, units, hide]) Performs a rotation of the axes in the optical train.
Detector([pixelscale, fov_pixels, . . .]) A Detector is a specialized type of OpticalElement that

forces a wavefront onto a specific fixed pixelization of
an Image plane.

AnalyticOpticalElement([shift_x, shift_y, . . .]) Defines an abstract analytic optical element, i.e.
ScalarTransmission([name, transmission]) Uniform transmission between 0 and 1.0 in intensity.
InverseTransmission([optic]) Given any arbitrary OpticalElement with transmission

T(x,y) return the inverse transmission 1 - T(x,y)
BandLimitedCoron alias of poppy.optics.BandLimitedCoronagraph
BandLimitedCoronagraph([name, kind, sigma, . . .]) Defines an ideal band limited coronagraph occulting

mask.
IdealFQPM([name, wavelength]) Defines an ideal 4-quadrant phase mask coronagraph,

with its retardance set perfectly to 0.5 waves at one spe-
cific wavelength and varying linearly on either side of
that.

CircularPhaseMask([name, radius, . . .]) Circular phase mask coronagraph, with its retardance
set perfectly at one specific wavelength and varying lin-
early on either side of that.

RectangularFieldStop([name, width, height]) Defines an ideal rectangular field stop
SquareFieldStop([name, size]) Defines an ideal square field stop
AnnularFieldStop([name, radius_inner, . . .]) Defines a circular field stop with an (optional) opaque

circular center region
HexagonFieldStop([name, side, diameter, . . .]) Defines an ideal hexagonal field stop
CircularOcculter([name, radius]) Defines an ideal circular occulter (opaque circle)
BarOcculter([name, width, height]) Defines an ideal bar occulter (like in MIRI’s Lyot coro-

nagraph)
FQPM_FFT_aligner([name, direction]) Helper class for modeling FQPMs accurately
CircularAperture([name, radius, pad_factor, . . .]) Defines an ideal circular pupil aperture
HexagonAperture([name, side, diameter, . . .]) Defines an ideal hexagonal pupil aperture
MultiHexagonAperture([name, flattoflat, . . .]) Defines a hexagonally segmented aperture
NgonAperture([name, nsides, radius, rotation]) Defines an ideal N-gon pupil aperture.
RectangleAperture([name, width, height, . . .]) Defines an ideal rectangular pupil aperture
SquareAperture([name, size]) Defines an ideal square pupil aperture
SecondaryObscuration([name, . . .]) Defines the central obscuration of an on-axis telescope

including secondary mirror and supports
AsymmetricSecondaryObscuration([. . .]) Defines a central obscuration with one or more supports

which can be oriented at arbitrary angles around the pri-
mary mirror, a la the three supports of JWST

ThinLens([name, nwaves, . . .]) An idealized thin lens, implemented as a Zernike defo-
cus term.

GaussianAperture([name, fwhm, w, pupil_diam]) Defines an ideal Gaussian apodized pupil aperture, or at
least as much of one as can be fit into a finite-sized array

Continued on next page

108 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

Table 2 – continued from previous page
KnifeEdge([name, rotation]) A half-infinite opaque plane, with a perfectly sharp edge

through the origin.
CompoundAnalyticOptic([opticslist, name, . . .]) Define a compound analytic optical element made up of

the combination of two or more individual optical ele-
ments.

QuadPhase([z, planetype, name]) Quadratic phase factor, q(z) suitable for representing a
radially-dependent wavefront curvature.

QuadraticLens([f_lens, planetype, name]) Gaussian Lens
FresnelWavefront(beam_radius[, units, . . .]) Wavefront for Fresnel diffraction calculation.
FresnelOpticalSystem([name, pupil_diameter, . . .]) Class representing a series of optical elements, through

which light can be propagated using the Fresnel formal-
ism.

WavefrontError(**kwargs) A base class for different sources of wavefront error
ParameterizedWFE([name, coefficients, . . .]) Define an optical element in terms of its distortion as

decomposed into a set of orthonormal basis functions
(e.g.

ZernikeWFE([name, coefficients, radius, . . .]) Define an optical element in terms of its Zernike com-
ponents by providing coefficients for each Zernike term
contributing to the analytic optical element.

SineWaveWFE([name, spatialfreq, amplitude, . . .]) A single sine wave ripple across the optic
StatisticalPSDWFE([name, index, wfe, . . .]) Statistical PSD WFE class from power law for optical

noise.

Instrument

class poppy.Instrument(name=”, *args, **kwargs)
Bases: object

A generic astronomical instrument, composed of

(1) an optical system implemented using POPPY, optionally with several configurations such as selectable
image plane or pupil plane stops, and

(2) some defined spectral bandpass(es) such as selectable filters, implemented using pysynphot.

This provides the capability to model both the optical and spectral responses of a given system. PSFs may be
calculated for given source spectral energy distributions and output as FITS files, with substantial flexibility.

It also provides capabilities for modeling some PSF effects not due to wavefront aberrations, for instance blur-
ring caused by pointing jitter.

This is a base class for Instrument functionality - you cannot easily use this directly, but rather should subclass it
for your particular instrument of interest. Some of the complexity of this class is due to splitting up functionality
into many separate routines to allow users to subclass just the relevant portions for a given task. There’s a fair
amount of functionality here but the learning curve is steeper than elsewhere in POPPY.

You will at a minimum want to override the following class methods:

• _get_optical_system

• _get_filter_list

• _get_default_nlambda

• _get_default_fov

• _get_fits_header

12.1. poppy Package 109

https://docs.python.org/3/library/functions.html#object

poppy Documentation, Release 0.9.0

For more complicated systems you may also want to override:

• _validate_config

• _get_synphot_bandpass

• _apply_jitter

Attributes Summary

filter Currently selected filter name (e.g.
filter_list List of available filter names for this instrument
name
options A dictionary capable of storing other arbitrary op-

tions, for extensibility.
pixelscale Detector pixel scale, in arcseconds/pixel (default:

0.025)
pupil Aperture for this optical system.
pupilopd Pupil OPD for this optical system.

Methods Summary

calc_datacube(wavelengths, *args, **kwargs) Calculate a spectral datacube of PSFs
calc_psf([outfile, source, nlambda, . . .]) Compute a PSF.
display() Display the currently configured optical system on

screen
get_optical_system(*args, **kwargs) Return an OpticalSystem instance corresponding to

the instrument as currently configured.

Attributes Documentation

filter
Currently selected filter name (e.g. F200W)

filter_list = None
List of available filter names for this instrument

name = 'Instrument'

options = {}
A dictionary capable of storing other arbitrary options, for extensibility. The following are all optional,
and may or may not be meaningful depending on which instrument is selected.

source_offset_r
[float] Radial offset of the target from the center, in arcseconds

source_offset_theta
[float] Position angle for that offset

pupil_shift_x, pupil_shift_y
[float] Relative shift of a coronagraphic pupil in X and Y, expressed as a decimal between 0.0-1.0 Note
that shifting an array too much will wrap around to the other side unphysically, but for reasonable
values of shift this is a non-issue.

110 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

jitter
[string “gaussian” or None] Type of jitter model to apply. Currently only convolution with a Gaussian
kernel of specified width jitter_sigma is implemented. (default: None)

jitter_sigma
[float] Width of the jitter kernel in arcseconds (default: 0.007 arcsec)

parity
[string “even” or “odd”] You may wish to ensure that the output PSF grid has either an odd or even
number of pixels. Setting this option will force that to be the case by increasing npix by one if
necessary.

pixelscale = 0.025
Detector pixel scale, in arcseconds/pixel (default: 0.025)

pupil = None
Aperture for this optical system. May be a FITS filename, FITS HDUList object, or poppy.OpticalElement

pupilopd = None
Pupil OPD for this optical system. May be a FITS filename, or FITS HDUList. If the file contains a
datacube, you may set this to a tuple (filename, slice) to select a given slice, or else the first slice will be
used.

Methods Documentation

calc_datacube(wavelengths, *args, **kwargs)
Calculate a spectral datacube of PSFs

wavelengths
[iterable of floats] List or ndarray or tuple of floating point wavelengths in meters, such as you would
supply in a call to calc_psf via the “monochromatic” option

calc_psf(outfile=None, source=None, nlambda=None, monochromatic=None, fov_arcsec=None,
fov_pixels=None, oversample=None, detector_oversample=None, fft_oversample=None,
overwrite=True, display=False, save_intermediates=False, return_intermediates=False, nor-
malize=’first’)

Compute a PSF. The result can either be written to disk (set outfile=”filename”) or else will be returned as
a FITS HDUlist object.

Output sampling may be specified in one of two ways:

1) Set oversample=. This will use that oversampling factor beyond detector pixels for output images,
and beyond Nyquist sampling for any FFTs to prior optical planes.

2) set detector_oversample= and fft_oversample=. This syntax lets you specify distinct oversam-
pling factors for intermediate and final planes.

By default, both oversampling factors are set equal to 2.

More advanced PSF computation options (pupil shifts, source positions, jitter, . . .) may be set by config-
uring the options dictionary attribute of this class.

source
[pysynphot.SourceSpectrum or dict] specification of source input spectrum. Default is a 5700 K
sunlike star.

nlambda
[int] How many wavelengths to model for broadband? The default depends on how wide the filter is:
(5,3,1) for types (W,M,N) respectively

12.1. poppy Package 111

poppy Documentation, Release 0.9.0

monochromatic
[float, optional] Setting this to a wavelength value (in meters) will compute a monochromatic PSF at
that wavelength, overriding filter and nlambda settings.

fov_arcsec
[float] field of view in arcsec. Default=5

fov_pixels
[int] field of view in pixels. This is an alternative to fov_arcsec.

outfile
[string] Filename to write. If None, then result is returned as an HDUList

oversample, detector_oversample, fft_oversample
[int] How much to oversample. Default=4. By default the same factor is used for final output pixels
and intermediate optical planes, but you may optionally use different factors if so desired.

overwrite
[bool] overwrite output FITS file if it already exists?

display
[bool] Whether to display the PSF when done or not.

save_intermediates, return_intermediates
[bool] Options for saving to disk or returning to the calling function the intermediate optical planes
during the propagation. This is useful if you want to e.g. examine the intensity in the Lyot plane for a
coronagraphic propagation.

normalize
[string] Desired normalization for output PSFs. See doc string for OpticalSystem.calc_psf. Default is
to normalize the entrance pupil to have integrated total intensity = 1.

outfits
[fits.HDUList] The output PSF is returned as a fits.HDUlist object. If outfile is set to a valid file-
name, the output is also written to that file.

display()
Display the currently configured optical system on screen

get_optical_system(*args, **kwargs)
Return an OpticalSystem instance corresponding to the instrument as currently configured.

Wavefront

class poppy.Wavefront(wavelength=<Quantity 1.e-06 m>, npix=1024, dtype=None, diam=<Quantity 8.
m>, oversample=2, pixelscale=None)

Bases: poppy.poppy_core.BaseWavefront

Wavefront in the Fraunhofer approximation: a monochromatic wavefront that can be transformed between pupil
and image planes only, not to intermediate planes

In a pupil plane, a wavefront object wf has

• wf.diam, a diameter in meters

• wf.pixelscale, a scale in meters/pixel

In an image plane, it has

• wf.fov, a field of view in arcseconds

112 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

• wf.pixelscale, a scale in arcsec/pixel

Use the wf.propagate_to() method to transform a wavefront between conjugate planes. This will update those
properties as appropriate.

By default, Wavefronts are created in a pupil plane. Set pixelscale=# to make an image plane instead.

wavelength
[float] Wavelength of light in meters

npix
[int] Size parameter for wavefront array to create, per side.

diam
[float, optional] For _PUPIL wavefronts, sets physical size corresponding to npix. Units are meters. At
most one of diam or pixelscale should be set when creating a wavefront.

pixelscale
[float, optional] For PlaneType.image PLANE wavefronts, use this pixel scale.

oversample
[int, optional] how much to oversample by in FFTs. Default is 2. Note that final propagations to Detectors
use a different algorithm and, optionally, a separate oversampling factor.

dtype
[numpy.dtype, optional] default is double complex.

Methods Summary

coordinates() Return Y, X coordinates for this wavefront, in the
manner of numpy.indices()

from_fresnel_wavefront(fresnel_wavefront[,
. . .])

Convert a Fresnel type wavefront object to a Fraun-
hofer one

image_coordinates(shape, pixelscale, . . .) Utility function to generate coordinates arrays for an
image plane wavefront

propagate_to(optic) Propagates a wavefront object to the next optic in the
list.

pupil_coordinates(shape, pixelscale) Utility function to generate coordinates arrays for a
pupil plane wavefront

Methods Documentation

coordinates()
Return Y, X coordinates for this wavefront, in the manner of numpy.indices()

This function knows about the offset resulting from FFTs. Use it whenever computing anything measured
in wavefront coordinates.

Y, X
[array_like] Wavefront coordinates in either meters or arcseconds for pupil and image, respectively

classmethod from_fresnel_wavefront(fresnel_wavefront, verbose=False)
Convert a Fresnel type wavefront object to a Fraunhofer one

Note, this function implicitly assumes this wavefront is at a pupil plane, so the resulting Fraunhofer wave-
front will have pixelscale in meters/pix rather than arcsec/pix.

fresnel_wavefront

12.1. poppy Package 113

poppy Documentation, Release 0.9.0

[Wavefront] The (Fresnel-type) wavefront to be converted.

static image_coordinates(shape, pixelscale, last_transform_type, image_centered)
Utility function to generate coordinates arrays for an image plane wavefront

shape
[tuple of ints] Shape of the wavefront array

pixelscale
[float or 2-tuple of floats] the pixelscale in meters/pixel, optionally different in X and Y

last_transform_type
[string] Was the last transformation on the Wavefront an FFT or an MFT?

image_centered
[string] Was POPPY trying to keeping the center of the image on a pixel, crosshairs (‘array_center’),
or corner?

propagate_to(optic)
Propagates a wavefront object to the next optic in the list. Modifies this wavefront object itself.

Transformations between pupil and detector planes use MFT or inverse MFT. Transformations between
pupil and other (non-detector) image planes use FFT or inverse FFT, unless explicitly tagged to use MFT
via a propagation hint. Transformations from any frame through a rotation or coordinate transform plane
simply transform the wavefront accordingly.

optic
[OpticalElement] The optic to propagate to. Used for determining the appropriate optical plane.

static pupil_coordinates(shape, pixelscale)
Utility function to generate coordinates arrays for a pupil plane wavefront

shape
[tuple of ints] Shape of the wavefront array

pixelscale
[float or 2-tuple of floats] the pixel scale in meters/pixel, optionally different in X and Y

OpticalSystem

class poppy.OpticalSystem(name=’unnamed system’, verbose=True, oversample=2, npix=None,
pupil_diameter=None)

Bases: poppy.poppy_core.BaseOpticalSystem

A class representing a series of optical elements, either Pupil, Image, or Detector planes, through which light
can be propagated.

The difference between Image and Detector planes is that Detectors have fixed pixels in terms of arcsec/pixel
regardless of wavelength (computed via MFT) while Image planes have variable pixels scaled in terms of
lambda/D. Pupil planes are some fixed size in meters, of course.

name
[string] descriptive name of optical system

oversample
[int] Either how many times above Nyquist we should be (for pupil or image planes), or how many times a
fixed detector pixel will be sampled. E.g. oversample=2 means image plane sampling lambda/4*D (twice
Nyquist) and detector plane sampling 2x2 computed pixels per real detector pixel. Default is 2.

verbose
[bool] whether to be more verbose with log output while computing

114 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

pupil_diameter
[astropy.Quantity of dimension length] Diameter of entrance pupil. Defaults to size of first optical element
if unspecified, or else 1 meter.

Methods Summary

add_image([optic, function, index]) Add an image plane optic to the optical system
add_pupil([optic, function, index]) Add a pupil plane optic from file(s) giving transmis-

sion or OPD
describe() Print out a string table describing all planes in an op-

tical system
input_wavefront([wavelength]) Create a Wavefront object suitable for sending

through a given optical system, based on the size of
the first optical plane, assumed to be a pupil.

propagate(wavefront[, normalize, . . .]) Core low-level routine for propagating a wavefront
through an optical system

Methods Documentation

add_image(optic=None, function=None, index=None, **kwargs)
Add an image plane optic to the optical system

That image plane optic can be specified either

1) from file(s) giving transmission or OPD
[set arguments transmission=filename and/or opd=filename]

2) from an analytic function
[set function='circle, fieldstop, bandlimitedcoron, or FQPM' and set additional kwargs
to define shape etc.

3) from an already-created OpticalElement object
[set optic=that object]

optic
[poppy.OpticalElement] An already-created OpticalElement you would like to add

function: string
Name of some analytic function to add. Optional kwargs can be used to set the parameters of that
function. Allowable function names are CircularOcculter, fieldstop, BandLimitedCoron, FQPM

opd, transmission
[string] Filenames of FITS files describing the desired optic.

index
[int] Index into the optical system’s planes for where to add the new optic. Defaults to appending the
optic to the end of the plane list.

poppy.OpticalElement subclass
The pupil optic added (either optic passed in, or a new OpticalElement created)

Now you can use the optic argument for either an OpticalElement or a string function name, and it will do
the right thing depending on type. Both existing arguments are left for back compatibility for now.

add_pupil(optic=None, function=None, index=None, **kwargs)
Add a pupil plane optic from file(s) giving transmission or OPD

12.1. poppy Package 115

poppy Documentation, Release 0.9.0

1) from file(s) giving transmission and/or OPD
[set arguments transmission=filename and/or opd=filename]

2) from an already-created OpticalElement object
[set optic=that object]

optic
[poppy.OpticalElement, optional] An already-created OpticalElement object you would like to add

function
[string, optional] Deprecated. The name of some analytic function you would like to use. Optional
kwargs can be used to set the parameters of that function. Allowable function names are Circle,
Square, Hexagon, Rectangle, and FQPM_FFT_Aligner

opd, transmission
[string, optional] Filenames of FITS files describing the desired optic.

index
[int] Index into the optical system’s planes for where to add the new optic. Defaults to appending the
optic to the end of the plane list.

poppy.OpticalElement subclass
The pupil optic added (either optic passed in, or a new OpticalElement created)

Note: Now you can use the optic argument for either an OpticalElement or a string function name, and it
will do the right thing depending on type. Both existing arguments are left for compatibility for now.

Any provided parameters are passed to OpticalElement.

describe()
Print out a string table describing all planes in an optical system

input_wavefront(wavelength=<Quantity 1.e-06 m>)
Create a Wavefront object suitable for sending through a given optical system, based on the size of the
first optical plane, assumed to be a pupil.

Defining this needs both a number of pixels (npix) and physical size (diam) to set the sampling.

If this OpticalSystem has a provided npix attribute that is not None, use that to set the input wavefront
size. Otherwise, check if the first optical element has a defined sampling. If not, default to 1024 pixels.

Uses self.source_offset to assign an off-axis tilt, if requested.

The convention here is that the desired source position is specified with respect to the final focal plane
of the optical system. If there are any intervening coordinate transformation planes, this function attempts
to take them into account when setting the tilt of the input wavefront. This is subtle trickery and may not
work properly in all instances.

wavelength
[float] Wavelength in meters

wavefront
[poppy.Wavefront instance] A wavefront appropriate for passing through this optical system.

propagate(wavefront, normalize=’none’, return_intermediates=False, display_intermediates=False)
Core low-level routine for propagating a wavefront through an optical system

This is a linear operator that acts on an input complex wavefront to give an output complex wavefront.

wavefront
[Wavefront instance] Wavefront to propagate through this optical system

116 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

normalize
[string] How to normalize the wavefront? * ‘first’ = set total flux = 1 after the first optic, presumably
a pupil * ‘last’ = set total flux = 1 after the entire optical system. * ‘exit_pupil’ = set total flux = 1 at
the last pupil of the optical system.

display_intermediates
[bool] Should intermediate steps in the calculation be displayed on screen? Default: False.

return_intermediates
[bool] Should intermediate steps in the calculation be returned? Default: False. If True, the second
return value of the method will be a list of poppy.Wavefront objects representing intermediate optical
planes from the calculation.

Returns a wavefront, and optionally also the intermediate wavefronts after each step of propagation.

CompoundOpticalSystem

class poppy.CompoundOpticalSystem(optsyslist=None, name=None, **kwargs)
Bases: poppy.poppy_core.OpticalSystem

A concatenation of two or more optical systems, acting as a single larger optical system.

This can be used to combine together multiple existing OpticalSystem instances, including mixed lists of both
Fraunhofer and Fresnel type systems.

Create combined optical system,

optsyslist : List of OpticalSystem and/or FresnelOpticalSystem instances.

Attributes Summary

planes A merged list containing all the planes in all the in-
cluded optical systems

Methods Summary

input_wavefront([wavelength]) Create input wavefront for a CompoundOpticalSys-
tem

propagate(wavefront[, normalize, . . .]) Core low-level routine for propagating a wavefront
through an optical system

Attributes Documentation

planes
A merged list containing all the planes in all the included optical systems

Methods Documentation

input_wavefront(wavelength=<Quantity 1.e-06 m>)
Create input wavefront for a CompoundOpticalSystem

Input wavefronts for a compound system are defined by the first OpticalSystem in the list. We tweak the
_display_hint_expected_planes to reflect the full compound system however.

12.1. poppy Package 117

poppy Documentation, Release 0.9.0

propagate(wavefront, normalize=’none’, return_intermediates=False, display_intermediates=False)
Core low-level routine for propagating a wavefront through an optical system

See docstring of OpticalSystem.propagate for details

OpticalElement

class poppy.OpticalElement(name=’unnamed optic’, verbose=True, planetype=<PlaneType.unspecified:
0>, oversample=1, interp_order=3)

Bases: object

Base class for all optical elements, whether from FITS files or analytic functions.

If instantiated on its own, this just produces a null optical element (empty space, i.e. an identity function on
transmitted wavefronts.) Use one of the many subclasses to create a nontrivial optic.

The OpticalElement class follows the behavoior of the Wavefront class, using units of meters/pixel in pupil
space and arcsec/pixel in image space.

The internal implementation of this class represents an optic with an array for the electric field amplitude trans-
missivity (or reflectivity), plus an array for the optical path difference in units of meters. This representation
was chosen since most typical optics of interest will have wavefront error properties that are independent of
wavelength. Subclasses particularly the AnalyticOpticalElements extend this paradigm with optics that have
wavelength-dependent properties.

The get_phasor() function is used to obtain the complex phasor for any desired wavelength based on the ampli-
tude and opd arrays. Those can individually be obtained from the get_transmission() and get_opd() functions.

name
[string] descriptive name for optic

verbose
[bool] whether to be more verbose in log outputs while computing

planetype
[int] either poppy.PlaneType.image or poppy.PlaneType.pupil

oversample
[int] how much to oversample beyond Nyquist.

interp_order
[int] the order (0 to 5) of the spline interpolation used if the optic is resized.

Attributes Summary

shape Return shape of the OpticalElement, as a tuple

Methods Summary

display([nrows, row, what, crosshairs, ax, . . .]) Display plots showing an optic’s transmission and
OPD.

get_opd(wave) Return the optical path difference, given a wave-
length.

get_phasor(wave) Compute a complex phasor from an OPD, given a
wavelength.

Continued on next page

118 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#object

poppy Documentation, Release 0.9.0

Table 10 – continued from previous page
get_transmission(wave) Return the electric field amplitude transmission,

given a wavelength.

Attributes Documentation

shape
Return shape of the OpticalElement, as a tuple

Methods Documentation

display(nrows=1, row=1, what=’intensity’, crosshairs=False, ax=None, colorbar=True, color-
bar_orientation=None, title=None, opd_vmax=<Quantity 5.e-07 m>, wavelength=<Quantity
1.e-06 m>, npix=512, grid_size=None)

Display plots showing an optic’s transmission and OPD.

what
[str] What to display: ‘intensity’, ‘amplitude’, ‘phase’, ‘opd’, or ‘both’ (meaning intensity and OPD
in two subplots)

ax
[matplotlib.Axes instance] Axes to display into

nrows, row
[integers] number of rows and row index for subplot display

crosshairs
[bool] Display crosshairs indicating the center?

colorbar
[bool] Show colorbar?

colorbar_orientation
[bool] Desired orientation, horizontal or vertical? Default is horizontal if only 1 row of plots, else
vertical

opd_vmax
[float] Max absolute value for OPD image display, in meters.

title
[string] Plot label

wavelength
[float, default 1 micron] For optics with wavelength-dependent behavior, evaluate at this wavelength
for display.

npix
[integer] For optics without a fixed pixel sampling, evaluate onto this many pixels for display.

grid_size
[float] For optics without a fixed pixel sampling, evaluate onto this large a spatial or angular extent for
display. Specify in units of arcsec for image plane optics, meters for all other optics. If unspecified, a
default value will be chosen instead, possibly from the ._default_display_size attribute, if present.

get_opd(wave)
Return the optical path difference, given a wavelength.

wave
[float or obj] either a scalar wavelength or a Wavefront object

12.1. poppy Package 119

poppy Documentation, Release 0.9.0

ndarray giving OPD in meters

get_phasor(wave)
Compute a complex phasor from an OPD, given a wavelength.

The returned value should be the complex phasor array as appropriate for multiplying by the wavefront
amplitude.

wave
[float or obj] either a scalar wavelength or a Wavefront object

get_transmission(wave)
Return the electric field amplitude transmission, given a wavelength.

wave
[float or obj] either a scalar wavelength or a Wavefront object

ndarray giving electric field amplitude transmission between 0 - 1.0

ArrayOpticalElement

class poppy.ArrayOpticalElement(opd=None, transmission=None, pixelscale=None, **kwargs)
Bases: poppy.poppy_core.OpticalElement

Defines an arbitrary optic, based on amplitude transmission and/or OPD given as numpy arrays.

This is a very lightweight wrapper for the base OpticalElement class, which just provides some additional
convenience features in the initializer..

FITSOpticalElement

class poppy.FITSOpticalElement(name=’unnamed optic’, transmission=None, opd=None, op-
dunits=None, rotation=None, pixelscale=None, planetype=None, trans-
mission_index=None, opd_index=None, shift=None, shift_x=None,
shift_y=None, flip_x=False, flip_y=False, **kwargs)

Bases: poppy.poppy_core.OpticalElement

Defines an arbitrary optic, based on amplitude transmission and/or OPD FITS files.

This optic could be a pupil or field stop, an aberrated mirror, a phase mask, etc. The FITSOpticalElement class
follows the behavior of the Wavefront class, using units of meters/pixel in pupil space and arcsec/pixel in image
space.

The interface is very flexible. You can define a FITSOpticalElement either from

• a single FITS file giving the amplitude transmission (in which case phase is zero)

• a single FITS file giving the OPD (in which case transmission is 1 everywhere)

• two FITS files specifying both transmission and OPD.

The FITS file argument(s) can be supplied either as

1. a string giving the path to a file on disk,

2. a FITS HDUlist object, or

3. in the case of OPDs, a tuple consisting of a path to a datacube and an integer index of a slice in that
datacube.

120 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

A better interface for slice selection in datacubes is the transmission_index and opd_index keyword parameters
listed below, but the tuple interface is retained for back compatibility with existing code.

The FITS file header must provide information on the pixel scale, preferentially via a PIXELSCL keyword, or
else you must supply the pixel scale directly. See more information just below in the parameter documentation
for pixelscale.

name
[string] descriptive name for optic

transmission, opd
[string or fits HDUList] Either FITS filenames or actual fits.HDUList objects for the transmission (from
0-1) and opd (in meters)

transmission_slice, opd_slice
[integers, optional] If either transmission or OPD files are datacubes, you can specify the slice index using
this argument.

opdunits
[string] units for the OPD file. Default is ‘meters’. can be ‘meter’, ‘meters’, ‘micron(s)’, ‘nanometer(s)’,
or their SI abbreviations. If this keyword is not set explicitly, the BUNIT keyword in the FITS header will
be checked.

planetype
[int] either PlaneType.image or PlaneType.pupil

oversample
[int] how much to oversample beyond Nyquist.

flip_x, flip_y
[bool] Should the FITS file be inverted in either of these axes after being loaded? Useful for matching
coordinate system orientations. If a flip is specified, it takes place prior to any shift or rotation operations.

shift
[tuple of floats, optional] 2-tuple containing X and Y fractional shifts for the pupil. These shifts are
implemented by rounding them to the nearest integer pixel, and doing integer pixel shifts on the data array,
without interpolation. If a shift is specified, it takes place after any rotation operations.

shift_x, shift_y
[floats, optional] Alternate way of specifying shifts, given in meters of shift per each axis. This is consistent
with how AnalyticOpticalElement classes specify shifts. If a shift is specified, it takes place after any
rotation operations. If both shift and shift_x/shift_y are specified, an error is raised.

rotation
[float] Rotation for that optic, in degrees counterclockwise. This is implemented using spline interpolation
via the scipy.ndimage.interpolation.rotate function.

pixelscale
[optical str or float] By default, poppy will attempt to determine the appropriate pixel scale by examining
the FITS header, checking keywords “PIXELSCL”, “PUPLSCAL” and/or ‘PIXSCALE’. PIXELSCL is
the default and should be preferred for new files; the latter two are kept for back-compatibility with earlier
format input files, for pupil and image planes respectively. If you would like to override and use a different
keyword, provide that as a string here. Alternatively, you can just set a floating point value directly too (in
meters/pixel or arcsec/pixel, respectively, for pupil or image planes).

transmission_index, opd_index
[ints, optional] If the input transmission or OPD files are datacubes, provide a scalar index here for which
cube slice should be used.

NOTE: All mask files must be squares.

12.1. poppy Package 121

poppy Documentation, Release 0.9.0

Also, please note that the adopted convention is for the spectral throughput (transmission) to be given in ap-
propriate units for acting on the amplitude of the electric field. Thus for example an optic with a uniform
transmission of 0.5 will reduce the electric field amplitude to 0.5 relative to the input, and thus reduce the total
power to 0.25. This distinction only matters in the case of semitransparent (grayscale) masks.

Attributes Summary

pupil_diam Diameter of the pupil (if this is a pupil plane optic)

Methods Summary

get_opd(wave) Return the optical path difference, given a wave-
length.

Attributes Documentation

pupil_diam
Diameter of the pupil (if this is a pupil plane optic)

Methods Documentation

get_opd(wave)
Return the optical path difference, given a wavelength.

When the OPD map is defined in terms of wavelength-independent phase, as in the case of the vector
apodizing phase plate coronagraph of Snik et al. (Proc. SPIE, 2012), it is converted to optical path
difference in meters at the given wavelength for consistency with the rest of POPPY.

wave
[float or obj] either a scalar wavelength or a Wavefront object

ndarray giving OPD in meters

Rotation

class poppy.Rotation(angle=0.0, units=’degrees’, hide=False, **kwargs)
Bases: poppy.poppy_core.CoordinateTransform

Performs a rotation of the axes in the optical train.

This is not an actual optic itself, of course, but can be used to model a rotated optic by appling a Rotation before
and/or after light is incident on that optic.

This is basically a placeholder to indicate the need for a rotation at a given part of the optical train. The actual
rotation computation is performed in the Wavefront object’s propagation routines.

angle
[float] Rotation angle, counterclockwise. By default in degrees.

units
[‘degrees’ or ‘radians’] Units for the rotation angle.

hide
[bool] Should this optic be displayed or hidden when showing the planes of an OpticalSystem?

122 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

Detector

class poppy.Detector(pixelscale=<Quantity 1. arcsec / pix>, fov_pixels=None, fov_arcsec=None, over-
sample=1, name=’Detector’, offset=None, **kwargs)

Bases: poppy.poppy_core.OpticalElement

A Detector is a specialized type of OpticalElement that forces a wavefront onto a specific fixed pixelization of
an Image plane.

This class is in effect just a metadata container for the desired sampling; all the machinery for transformation of
a wavefront to that sampling happens within Wavefront.

Note that this is not in any way a representation of real noisy detectors; no model for read noise, imperfect
sensitivity, etc is included whatsoever.

name
[string] Descriptive name

pixelscale
[float or astropy.units.Quantity] Pixel scale, either in angular units such as arcsec/pixel, or (for Fresnel op-
tical systems only) in physical units such as micron/pixel. Units should be specified as astropy Quantities.
If pixelscale is given as a float without an explicit unit, it will be interpreted as in arcsec/pixel. Note, this
value may be further subdivided by specifying the oversample parameter > 1.

fov_pixels, fov_arcsec
[float or astropy.units.Quantity] The field of view may be specified either in arcseconds or by a number
of pixels. Either is acceptable and the pixel scale is used to convert as needed. You may specify a non-
square FOV by providing two elements in an iterable. Note that this follows the usual Python convention
of ordering axes (Y,X), so put your desired Y axis size first. For Fresnel optical systems, if specifying
pixelscale in microns/pixel then you must specify fov_pixels rather than fov_arcsec.

oversample
[int] Oversampling factor beyond the detector pixel scale. The returned array will have sampling that much
finer than the specified pixelscale.

offset
[tuple (X,Y)] Offset for the detector center relative to a hypothetical off-axis PSF. Specifying this lets you
pick a different sub-region for the detector to compute, if for some reason you are computing a small
subarray around an off-axis source. (Has not been tested!)

Attributes Summary

shape Return shape of the OpticalElement, as a tuple

Attributes Documentation

shape
Return shape of the OpticalElement, as a tuple

AnalyticOpticalElement

class poppy.AnalyticOpticalElement(shift_x=None, shift_y=None, rotation=None, inclination_x=None,
inclination_y=None, **kwargs)

Bases: poppy.poppy_core.OpticalElement

Defines an abstract analytic optical element, i.e. one definable by some formula rather than by an input OPD or

12.1. poppy Package 123

poppy Documentation, Release 0.9.0

pupil file.

This class is useless on its own; instead use its various subclasses that implement appropriate get_opd and/or
get_transmission functions. It exists mostly to provide some behaviors & initialization common to all analytic
optical elements.

name, verbose, oversample, planetype
[various] Same as for OpticalElement

transmission, opd
[string] These are not allowed for Analytic optical elements, and this class will raise an error if you try to
set one.

shift_x, shift_y
[Optional floats] Translations of this optic, given in meters relative to the optical axis for pupil plane
elements, or arcseconds relative to the optical axis for image plane elements.

rotation
[Optional float] Rotation of the optic around its center, given in degrees counterclockwise. Note that if you
apply both shift and rotation, the optic rotates around its own center, rather than the optical axis.

Attributes Summary

shape Return shape of the OpticalElement, as a tuple

Methods Summary

get_coordinates(wave) Get coordinates of this optic, optionally including
shifts

get_opd(wave) Return the optical path difference, given a wave-
length.

get_phasor(wave) Compute a complex phasor from an OPD, given a
wavelength.

get_transmission(wave) Note that this is the amplitude transmission, not the
total intensity transmission.

sample([wavelength, npix, grid_size, what, . . .]) Sample the Analytic Optic onto a grid and return the
array

to_fits([outname, what, wavelength, npix]) Save an analytic optic computed onto a grid to a FITS
file

Attributes Documentation

shape
Return shape of the OpticalElement, as a tuple

Methods Documentation

get_coordinates(wave)
Get coordinates of this optic, optionally including shifts

Method: Calls the supplied wave object’s coordinates() method, then checks for the existence of the follow-
ing attributes: “shift_x”, “shift_y”, “rotation”, “inclination_x”, “inclination_y” If any of them are present,
then the coordinates are modified accordingly.

124 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

Shifts are given in meters for pupil optics and arcseconds for image optics. Rotations and inclinations are
given in degrees.

For multiple transformations, the order of operations is:
shift, rotate, incline.

get_opd(wave)
Return the optical path difference, given a wavelength.

wave
[float or obj] either a scalar wavelength or a Wavefront object

ndarray giving OPD in meters

get_phasor(wave)
Compute a complex phasor from an OPD, given a wavelength.

The returned value should be the complex phasor array as appropriate for multiplying by the wavefront
amplitude.

wave
[float or obj] either a scalar wavelength or a Wavefront object

get_transmission(wave)
Note that this is the amplitude transmission, not the total intensity transmission.

sample(wavelength=<Quantity 1.e-06 m>, npix=512, grid_size=None, what=’amplitude’, re-
turn_scale=False, phase_unit=’waves’)

Sample the Analytic Optic onto a grid and return the array

wavelength
[astropy.units.Quantity or float] Wavelength (in meters if unit not given explicitly)

npix
[integer] Number of pixels for sampling the array

grid_size
[float] Field of view grid size (diameter) for sampling the optic, in meters for pupil plane optics and
arcseconds for image planes. Default value is taken from the optic’s properties, if defined. Otherwise
defaults to 6.5 meters or 2 arcseconds depending on plane.

what
[string] What to return: optic ‘amplitude’ transmission, ‘intensity’ transmission, ‘phase’, or ‘opd’.
Note that optical path difference, OPD, is given in meters.

phase_unit
[string] Unit for returned phase array IF what==’phase’. One of ‘radians’, ‘waves’, ‘meters’. (‘meters’
option is deprecated; use what=’opd’ instead.)

return_scale
[float] if True, will return a tuple containing the desired array and a float giving the pixel scale.

to_fits(outname=None, what=’amplitude’, wavelength=<Quantity 1.e-06 m>, npix=512, **kwargs)
Save an analytic optic computed onto a grid to a FITS file

The FITS file is returned to the calling function, and may optionally be saved directly to disk.

what
[string] What quantity to save. See the sample function of this class

wavelength
[float] Wavelength in meters.

12.1. poppy Package 125

poppy Documentation, Release 0.9.0

npix
[integer] Number of pixels.

outname
[string, optional] Filename to write out a FITS file to disk

See the sample() function for additional optional parameters.

ScalarTransmission

class poppy.ScalarTransmission(name=None, transmission=1.0, **kwargs)
Bases: poppy.optics.AnalyticOpticalElement

Uniform transmission between 0 and 1.0 in intensity.

Either a null optic (empty plane) or some perfect ND filter. . . But most commonly this is just used as a null
optic placeholder

Methods Summary

get_transmission(wave) Note that this is the amplitude transmission, not the
total intensity transmission.

Methods Documentation

get_transmission(wave)
Note that this is the amplitude transmission, not the total intensity transmission.

InverseTransmission

class poppy.InverseTransmission(optic=None)
Bases: poppy.optics.AnalyticOpticalElement

Given any arbitrary OpticalElement with transmission T(x,y) return the inverse transmission 1 - T(x,y)

This is a useful ingredient in the SemiAnalyticCoronagraph algorithm.

Attributes Summary

shape Return shape of the OpticalElement, as a tuple

Methods Summary

display(**kwargs) Display plots showing an optic’s transmission and
OPD.

get_opd(wave) Return the optical path difference, given a wave-
length.

get_transmission(wave) Note that this is the amplitude transmission, not the
total intensity transmission.

126 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

Attributes Documentation

shape
Return shape of the OpticalElement, as a tuple

Methods Documentation

display(**kwargs)
Display plots showing an optic’s transmission and OPD.

what
[str] What to display: ‘intensity’, ‘amplitude’, ‘phase’, ‘opd’, or ‘both’ (meaning intensity and OPD
in two subplots)

ax
[matplotlib.Axes instance] Axes to display into

nrows, row
[integers] number of rows and row index for subplot display

crosshairs
[bool] Display crosshairs indicating the center?

colorbar
[bool] Show colorbar?

colorbar_orientation
[bool] Desired orientation, horizontal or vertical? Default is horizontal if only 1 row of plots, else
vertical

opd_vmax
[float] Max absolute value for OPD image display, in meters.

title
[string] Plot label

wavelength
[float, default 1 micron] For optics with wavelength-dependent behavior, evaluate at this wavelength
for display.

npix
[integer] For optics without a fixed pixel sampling, evaluate onto this many pixels for display.

grid_size
[float] For optics without a fixed pixel sampling, evaluate onto this large a spatial or angular extent for
display. Specify in units of arcsec for image plane optics, meters for all other optics. If unspecified, a
default value will be chosen instead, possibly from the ._default_display_size attribute, if present.

get_opd(wave)
Return the optical path difference, given a wavelength.

wave
[float or obj] either a scalar wavelength or a Wavefront object

ndarray giving OPD in meters

get_transmission(wave)
Note that this is the amplitude transmission, not the total intensity transmission.

12.1. poppy Package 127

poppy Documentation, Release 0.9.0

BandLimitedCoron

poppy.BandLimitedCoron
alias of poppy.optics.BandLimitedCoronagraph

BandLimitedCoronagraph

class poppy.BandLimitedCoronagraph(name=’unnamed BLC’, kind=’circular’, sigma=1, wave-
length=None, **kwargs)

Bases: poppy.optics.AnalyticImagePlaneElement

Defines an ideal band limited coronagraph occulting mask.

name
[string] Descriptive name

kind
[string] Either ‘circular’ or ‘linear’. The linear ones are custom shaped to NIRCAM’s design with flat
bits on either side of the linear tapered bit. Also includes options ‘nircamcircular’ and ‘nircamwedge’
specialized for the JWST NIRCam occulters, including the off-axis ND acq spots and the changing width
of the wedge occulter.

sigma
[float] The numerical size parameter, as specified in Krist et al. 2009 SPIE

wavelength
[float] Wavelength this BLC is optimized for, only for the linear ones.

Attributes Summary

allowable_kinds Allowable types of BLC supported by this class

Methods Summary

get_transmission(wave) Compute the amplitude transmission appropriate for
a BLC for some given pixel spacing corresponding
to the supplied Wavefront.

Attributes Documentation

allowable_kinds = ['circular', 'linear']
Allowable types of BLC supported by this class

Methods Documentation

get_transmission(wave)
Compute the amplitude transmission appropriate for a BLC for some given pixel spacing corresponding
to the supplied Wavefront.

Based on the Krist et al. SPIE paper on NIRCam coronagraph design

Note that the equations in Krist et al specify the intensity transmission of the occulter, but what we want
to return here is the amplitude transmittance. That is the square root of the intensity, of course, so the

128 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

equations as implemented here all differ from those written in Krist’s SPIE paper by lacking an exponential
factor of 2. Thanks to John Krist for pointing this out.

IdealFQPM

class poppy.IdealFQPM(name=’unnamed FQPM ’, wavelength=<Quantity 1.065e-05 m>, **kwargs)
Bases: poppy.optics.AnalyticImagePlaneElement

Defines an ideal 4-quadrant phase mask coronagraph, with its retardance set perfectly to 0.5 waves at one specific
wavelength and varying linearly on either side of that. “Ideal” in the sense of ignoring chromatic effects other
than just the direct scaling of the wavelength.

name
[string] Descriptive name

wavelength
[float] Wavelength in meters for which the FQPM was designed, and at which there is exactly 1/2 a wave
of retardance.

Methods Summary

get_opd(wave) Compute the OPD appropriate for a 4QPM for some
given pixel spacing corresponding to the supplied
Wavefront

Methods Documentation

get_opd(wave)
Compute the OPD appropriate for a 4QPM for some given pixel spacing corresponding to the supplied
Wavefront

CircularPhaseMask

class poppy.CircularPhaseMask(name=None, radius=<Quantity 1. arcsec>, wavelength=<Quantity 1.e-
06 m>, retardance=0.5, **kwargs)

Bases: poppy.optics.AnalyticImagePlaneElement

Circular phase mask coronagraph, with its retardance set perfectly at one specific wavelength and varying lin-
early on either side of that.

name
[string] Descriptive name

radius
[float] Radius of the mask

wavelength
[float] Wavelength in meters for which the phase mask was designed

retardance
[float] Optical path delay at that wavelength, specified in waves relative to the reference wavelengt. Default
is 0.5.

12.1. poppy Package 129

poppy Documentation, Release 0.9.0

Methods Summary

get_opd(wave) Compute the OPD appropriate for that phase mask
for some given pixel spacing corresponding to the
supplied Wavefront

Methods Documentation

get_opd(wave)
Compute the OPD appropriate for that phase mask for some given pixel spacing corresponding to the
supplied Wavefront

RectangularFieldStop

class poppy.RectangularFieldStop(name=’unnamed field stop’, width=<Quantity 0.5 arcsec>,
height=<Quantity 5. arcsec>, **kwargs)

Bases: poppy.optics.AnalyticImagePlaneElement

Defines an ideal rectangular field stop

name
[string] Descriptive name

width, height: float
Size of the field stop, in arcseconds. Default 0.5 width, height 5.

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the field
stop.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the field stop.

SquareFieldStop

class poppy.SquareFieldStop(name=’unnamed field stop’, size=<Quantity 20. arcsec>, **kwargs)
Bases: poppy.optics.RectangularFieldStop

Defines an ideal square field stop

name
[string] Descriptive name

size
[float] Size of the field stop, in arcseconds. Default 20.

130 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

AnnularFieldStop

class poppy.AnnularFieldStop(name=’unnamed annular field stop’, radius_inner=0.0, radius_outer=1.0,
**kwargs)

Bases: poppy.optics.AnalyticImagePlaneElement

Defines a circular field stop with an (optional) opaque circular center region

name
[string] Descriptive name

radius_inner
[float] Radius of the central opaque region, in arcseconds. Default is 0.0 (no central opaque spot)

radius_outer
[float] Radius of the circular field stop outer edge. Default is 10. Set to 0.0 for no outer edge.

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the field
stop.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the field stop.

HexagonFieldStop

class poppy.HexagonFieldStop(name=None, side=None, diameter=None, flattoflat=None, **kwargs)
Bases: poppy.optics.AnalyticImagePlaneElement

Defines an ideal hexagonal field stop

Specify either the side length (= corner radius) or the flat-to-flat distance, or the point-to-point diameter, in
angular units

name
[string] Descriptive name

side
[float, optional] side length (and/or radius) of hexagon, in arcsec. Overrides flattoflat if both are present.

flattoflat
[float, optional] Distance between sides (flat-to-flat) of the hexagon, in arcsec. Default is 1.0

diameter
[float, optional] point-to-point diameter of hexagon. Twice the side length. Overrides flattoflat, but is
overridden by side.

Note you can also specify the standard parameter “rotation” to rotate the hexagon by some amount.

Attributes Summary

12.1. poppy Package 131

poppy Documentation, Release 0.9.0

diameter
flat_to_flat

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the oc-
culter.

Attributes Documentation

diameter

flat_to_flat

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the occulter.

CircularOcculter

class poppy.CircularOcculter(name=’unnamed occulter’, radius=1.0, **kwargs)
Bases: poppy.optics.AnnularFieldStop

Defines an ideal circular occulter (opaque circle)

name
[string] Descriptive name

radius
[float] Radius of the occulting spot, in arcseconds. Default is 1.0

BarOcculter

class poppy.BarOcculter(name=’bar occulter’, width=<Quantity 1. arcsec>, height=<Quantity 10. arc-
sec>, **kwargs)

Bases: poppy.optics.AnalyticImagePlaneElement

Defines an ideal bar occulter (like in MIRI’s Lyot coronagraph)

name
[string] Descriptive name

width
[float] width of the bar stop, in arcseconds. Default is 1.0

height: float
heightof the bar stop, in arcseconds. Default is 10.0

132 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the oc-
culter.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the occulter.

FQPM_FFT_aligner

class poppy.FQPM_FFT_aligner(name=’FQPM FFT aligner’, direction=’forward’, **kwargs)
Bases: poppy.optics.AnalyticOpticalElement

Helper class for modeling FQPMs accurately

Adds (or removes) a slight wavelength- and pixel-scale-dependent tilt to a pupil wavefront, to ensure the correct
alignment of the image plane FFT’ed PSF with the desired quad pixel alignment for the FQPM.

This is purely a computational convenience tool to work around the pixel coordinate restrictions imposed by the
FFT algorithm, not a representation of any physical optic.

direction
[string] ‘forward’ or ‘backward’

Methods Summary

get_opd(wave) Compute the required tilt needed to get the PSF cen-
tered on the corner between the 4 central pixels, not
on the central pixel itself.

Methods Documentation

get_opd(wave)
Compute the required tilt needed to get the PSF centered on the corner between the 4 central pixels, not
on the central pixel itself.

CircularAperture

class poppy.CircularAperture(name=None, radius=<Quantity 1. m>, pad_factor=1.0, plane-
type=<PlaneType.unspecified: 0>, gray_pixel=True, **kwargs)

Bases: poppy.optics.AnalyticOpticalElement

Defines an ideal circular pupil aperture

name
[string] Descriptive name

radius
[float] Radius of the pupil, in meters. Default is 1.0

gray_pixel

12.1. poppy Package 133

poppy Documentation, Release 0.9.0

[bool] Apply gray pixel approximation to return fractional transmission for edge pixels that are only par-
tially within this aperture?

pad_factor
[float, optional] Amount to oversize the wavefront array relative to this pupil. This is in practice not very
useful, but it provides a straightforward way of verifying during code testing that the amount of padding
(or size of the circle) does not make any numerical difference in the final result.

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the aper-
ture.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the aperture.

HexagonAperture

class poppy.HexagonAperture(name=None, side=None, diameter=None, flattoflat=None, **kwargs)
Bases: poppy.optics.AnalyticOpticalElement

Defines an ideal hexagonal pupil aperture

Specify either the side length (= corner radius) or the flat-to-flat distance, or the point-to-point diameter.

name
[string] Descriptive name

side
[float, optional] side length (and/or radius) of hexagon, in meters. Overrides flattoflat if both are present.

flattoflat
[float, optional] Distance between sides (flat-to-flat) of the hexagon, in meters. Default is 1.0

diameter
[float, optional] point-to-point diameter of hexagon. Twice the side length. Overrides flattoflat, but is
overridden by side.

Attributes Summary

diameter
flat_to_flat

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the oc-
culter.

134 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

Attributes Documentation

diameter

flat_to_flat

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the occulter.

MultiHexagonAperture

class poppy.MultiHexagonAperture(name=’MultiHex’, flattoflat=1.0, side=None, gap=0.01, rings=1, seg-
mentlist=None, center=False, **kwargs)

Bases: poppy.optics.AnalyticOpticalElement

Defines a hexagonally segmented aperture

name
[string] Descriptive name

rings
[integer] The number of rings of hexagons to include, not counting the central segment (i.e. 2 for a JWST-
like aperture, 3 for a Keck-like aperture, and so on)

side
[float, optional] side length (and/or radius) of hexagon, in meters. Overrides flattoflat if both are present.

flattoflat
[float, optional] Distance between sides (flat-to-flat) of the hexagon, in meters. Default is 1.0

gap: float, optional
Gap between adjacent segments, in meters. Default is 0.01 m = 1 cm

center
[bool, optional] should the central segment be included? Default is False.

segmentlist
[list of ints, optional] This allows one to specify that only a subset of segments are present, for a partially
populated segmented telescope, non-redundant segment set, etc. Segments are numbered from 0 for the
center segment, 1 for the segment immediately above it, and then clockwise around each ring. For example,
segmentlist=[1,3,5] would make an aperture of 3 segments.

Note that this routine becomes a bit slow for nrings >4. For repeated computations on the same aperture, avoid
repeated evaluations of this function. It will be faster to create this aperture, evalute it once, and save the result
onto a discrete array, via either

(1) saving it to a FITS file using the to_fits() method, and then use that in a FITSOpticalElement, or
(2) Use the fixed_sampling_optic function to create an ArrayOpticalElement with a sampled version
of this.

Methods Summary

12.1. poppy Package 135

poppy Documentation, Release 0.9.0

get_transmission(wave) Compute the transmission inside/outside of the oc-
culter.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the occulter.

NgonAperture

class poppy.NgonAperture(name=None, nsides=6, radius=<Quantity 1. m>, rotation=0.0, **kwargs)
Bases: poppy.optics.AnalyticOpticalElement

Defines an ideal N-gon pupil aperture.

name
[string] Descriptive name

nsides
[integer] Number of sides. Default is 6.

radius
[float] radius to the vertices, meters. Default is 1.

rotation
[float] Rotation angle to first vertex, in degrees counterclockwise from the +X axis. Default is 0.

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the oc-
culter.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the occulter.

RectangleAperture

class poppy.RectangleAperture(name=None, width=<Quantity 0.5 m>, height=<Quantity 1. m>, rota-
tion=0.0, **kwargs)

Bases: poppy.optics.AnalyticOpticalElement

Defines an ideal rectangular pupil aperture

name
[string] Descriptive name

width
[float] width of the rectangle, in meters. Default is 0.5

height
[float] height of the rectangle, in meters. Default is 1.0

136 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

rotation
[float] Rotation angle for ‘width’ axis. Default is 0.

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the oc-
culter.

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the occulter.

SquareAperture

class poppy.SquareAperture(name=None, size=<Quantity 1. m>, **kwargs)
Bases: poppy.optics.RectangleAperture

Defines an ideal square pupil aperture

name
[string] Descriptive name

size: float
side length of the square, in meters. Default is 1.0

rotation
[float] Rotation angle for the square. Default is 0.

Attributes Summary

size

Attributes Documentation

size

SecondaryObscuration

class poppy.SecondaryObscuration(name=None, secondary_radius=<Quantity 0.5 m>, n_supports=4,
support_width=<Quantity 0.01 m>, support_angle_offset=0.0,
**kwargs)

Bases: poppy.optics.AnalyticOpticalElement

Defines the central obscuration of an on-axis telescope including secondary mirror and supports

The number of supports is adjustable but they are always radially symmetric around the center. See Asymmet-
ricSecondaryObscuration if you need more flexibility.

secondary_radius
[float or astropy Quantity length] Radius of the circular secondary obscuration, in meters or other unit.
Default 0.5 m

12.1. poppy Package 137

poppy Documentation, Release 0.9.0

n_supports
[int] Number of secondary mirror supports (“spiders”). These will be spaced equally around a circle.
Default is 4.

support_width
[float or astropy Quantity length] Width of each support, in meters or other unit. Default is 0.01 m = 1 cm.

support_angle_offset
[float] Angular offset, in degrees, of the first secondary support from the X axis.

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the ob-
scuration

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the obscuration

AsymmetricSecondaryObscuration

class poppy.AsymmetricSecondaryObscuration(support_angle=(0, 90, 240), support_width=<Quantity
0.01 m>, support_offset_x=0.0, support_offset_y=0.0,
**kwargs)

Bases: poppy.optics.SecondaryObscuration

Defines a central obscuration with one or more supports which can be oriented at arbitrary angles around the
primary mirror, a la the three supports of JWST

This also allows for secondary supports that do not intersect with the primary mirror center; use the sup-
port_offset_x and support_offset_y parameters to apply offsets relative to the center for the origin of each strut.

secondary_radius
[float] Radius of the circular secondary obscuration. Default 0.5 m

support_angle
[ndarray or list of floats] The angle measured counterclockwise from +Y for each support

support_width
[float or astropy Quantity of type length, or list of those] if scalar, gives the width for all support struts
if a list, gives separately the width for each support strut independently. Widths in meters or other unit if
specified. Default is 0.01 m = 1 cm.

support_offset_x
[float, or list of floats.] Offset in the X direction of the start point for each support. if scalar, applies to all
supports; if a list, gives a separate offset for each.

support_offset_y
[float, or list of floats.] Offset in the Y direction of the start point for each support. if scalar, applies to all
supports; if a list, gives a separate offset for each.

Methods Summary

138 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

get_transmission(wave) Compute the transmission inside/outside of the ob-
scuration

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the obscuration

ThinLens

class poppy.ThinLens(name=’Thin lens’, nwaves=4.0, reference_wavelength=<Quantity 1.e-06 m>, ra-
dius=<Quantity 1. m>, **kwargs)

Bases: poppy.optics.CircularAperture

An idealized thin lens, implemented as a Zernike defocus term.

The sign convention adopted is the usual for lenses: a “positive” lens is converging (i.e. convex), a “negative”
lens is diverging (i.e. concave).

In other words, a positive number of waves of defocus indicates a lens with positive OPD at the center, and
negative at its rim. (Note, this is opposite the sign convention for Zernike defocus)

nwaves
[float] The number of waves of defocus, peak to valley. May be positive or negative. This is applied as a
normalization over an area defined by the circumscribing circle of the input wavefront. That is, there will
be nwaves defocus peak-to-valley over the region of the pupil that has nonzero input intensity.

reference_wavelength
[float] Wavelength, in meters, at which that number of waves of defocus is specified.

radius
[float] Pupil radius, in meters, over which the Zernike defocus term should be computed such that rho = 1
at r = radius.

Methods Summary

get_opd(wave) Return the optical path difference, given a wave-
length.

Methods Documentation

get_opd(wave)
Return the optical path difference, given a wavelength.

wave
[float or obj] either a scalar wavelength or a Wavefront object

ndarray giving OPD in meters

GaussianAperture

class poppy.GaussianAperture(name=None, fwhm=None, w=None, pupil_diam=None, **kwargs)
Bases: poppy.optics.AnalyticOpticalElement

12.1. poppy Package 139

poppy Documentation, Release 0.9.0

Defines an ideal Gaussian apodized pupil aperture, or at least as much of one as can be fit into a finite-sized
array

The Gaussian’s width must be set with either the fwhm or w parameters.

Note that this makes an optic whose electric field amplitude transmission is the specified Gaussian; thus the
intensity transmission will be the square of that Gaussian.

name
[string] Descriptive name

fwhm
[float, optional.] Full width at half maximum for the Gaussian, in meters.

w
[float, optional] Beam width parameter, equal to fwhm/(2*sqrt(ln(2))).

pupil_diam
[float, optional] default pupil diameter for cases when it is not otherwise specified (e.g. displaying the
optic by itself.) Default value is 3x the FWHM.

Attributes Summary

fwhm

Methods Summary

get_transmission(wave) Compute the transmission inside/outside of the aper-
ture.

Attributes Documentation

fwhm

Methods Documentation

get_transmission(wave)
Compute the transmission inside/outside of the aperture.

KnifeEdge

class poppy.KnifeEdge(name=None, rotation=0, **kwargs)
Bases: poppy.optics.AnalyticOpticalElement

A half-infinite opaque plane, with a perfectly sharp edge through the origin.

Use the ‘rotation’, ‘shift_x’, and ‘shift_y’ parameters to adjust location and orientation.

Rotation=0 yields a knife edge oriented vertically (edge parallel to +y) with the opaque side to the right.

Methods Summary

140 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

get_transmission(wave) Note that this is the amplitude transmission, not the
total intensity transmission.

Methods Documentation

get_transmission(wave)
Note that this is the amplitude transmission, not the total intensity transmission.

CompoundAnalyticOptic

class poppy.CompoundAnalyticOptic(opticslist=None, name=’unnamed’, mergemode=’and’, ver-
bose=True, **kwargs)

Bases: poppy.optics.AnalyticOpticalElement

Define a compound analytic optical element made up of the combination of two or more individual optical
elements.

This is just a convenience routine for semantic organization of optics. It can be useful to keep the list of optical
planes cleaner, but you can certainly just add a whole bunch of planes all in a row without using this class to
group them.

All optics should be of the same plane type (pupil or image); propagation between different optics contained
inside one compound is not supported.

opticslist
[list] A list of AnalyticOpticalElements to be merged together.

mergemode
[string, default = ‘and’]

Method for merging transmissions:

‘and’
[resulting transmission is product of constituents. (E.g] trans = trans1*trans2)

‘or’
[resulting transmission is sum of constituents, with overlap] subtracted. (E.g. trans = trans1 +
trans2 - trans1*trans2)

In both methods, the resulting OPD is the sum of the constituents’ OPDs.

Methods Summary

get_opd(wave) Return the optical path difference, given a wave-
length.

get_transmission(wave) Note that this is the amplitude transmission, not the
total intensity transmission.

Methods Documentation

get_opd(wave)
Return the optical path difference, given a wavelength.

wave

12.1. poppy Package 141

poppy Documentation, Release 0.9.0

[float or obj] either a scalar wavelength or a Wavefront object

ndarray giving OPD in meters

get_transmission(wave)
Note that this is the amplitude transmission, not the total intensity transmission.

QuadPhase

class poppy.QuadPhase(z=<Quantity 1. m>, planetype=<PlaneType.intermediate: 5>, name=’Quadratic
Wavefront Curvature Operator’, **kwargs)

Bases: poppy.optics.AnalyticOpticalElement

Quadratic phase factor, q(z) suitable for representing a radially-dependent wavefront curvature.

z
[float or astropy.Quantity of type length] radius of curvature

planetype
[poppy.PlaneType constant] plane type

name
[string] Descriptive string name

Lawrence eq. 88

Methods Summary

get_opd(wave) Return OPD representing a quadratic phase

Methods Documentation

get_opd(wave)
Return OPD representing a quadratic phase

wave
[obj] a Fresnel Wavefront object

QuadraticLens

class poppy.QuadraticLens(f_lens=<Quantity 1. m>, planetype=<PlaneType.unspecified: 0>,
name=’Quadratic Lens’, **kwargs)

Bases: poppy.fresnel.QuadPhase

Gaussian Lens

Thin wrapper for QuadPhase

f_lens
[float or astropy.Quantity of type length] Focal length of this lens

name
[string] Descriptive string name

planetype
[poppy.PlaneType constant] plane type

142 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

FresnelWavefront

class poppy.FresnelWavefront(beam_radius, units=Unit("m"), rayleigh_factor=2.0, oversample=2,
**kwargs)

Bases: poppy.poppy_core.BaseWavefront

Wavefront for Fresnel diffraction calculation.

This class inherits from and extends the Fraunhofer-domain poppy.Wavefront class.

beam_radius
[astropy.Quantity of type length] Radius of the illuminated beam at the initial optical plane. I.e. this would
be the pupil aperture radius in an entrance pupil.

units
[astropy.units.Unit] Astropy units of input parameters

rayleigh_factor:
Threshold for considering a wave spherical.

oversample
[float] Padding factor to apply to the wavefront array, multiplying on top of the beam radius.

• Lawrence, G. N. (1992), Optical Modeling, in Applied Optics and Optical Engineering., vol. XI,
edited by R. R. Shannon and J. C. Wyant., Academic Press, New York.

• https://en.wikipedia.org/wiki/Gaussian_beam

• IDEX Optics and Photonics(n.d.), Gaussian Beam Optics,
[online] Available from: https://marketplace.idexop.com/store/SupportDocuments/All_About_
Gaussian_Beam_OpticsWEB.pdf

• Krist, J. E. (2007), PROPER: an optical propagation library for IDL,
vol. 6675, p. 66750P-66750P-9. [online] Available from: http://dx.doi.org/10.1117/12.731179

• Andersen, T., and A. Enmark (2011), Integrated Modeling of Telescopes, Springer Science & Business
Media.

Attributes Summary

angular_coordinates Should coordinates be expressed in arcseconds in-
stead of meters at the current plane?

divergence Half-angle divergence of the gaussian beam
fov FOV in arcseconds, if applicable
param_str Formatted string of gaussian beam parameters.
pixelscale Pixelscale, in meters by default or in arcseconds if

angular_coordinates is True
waists each [z_w_0,w_0] for each waist generated by an op-

tic
z_r Rayleigh distance for the gaussian beam, based on

current beam waist and wavelength.

Methods Summary

12.1. poppy Package 143

https://en.wikipedia.org/wiki/Gaussian_beam
https://marketplace.idexop.com/store/SupportDocuments/All_About_Gaussian_Beam_OpticsWEB.pdf
https://marketplace.idexop.com/store/SupportDocuments/All_About_Gaussian_Beam_OpticsWEB.pdf
http://dx.doi.org/10.1117/12.731179

poppy Documentation, Release 0.9.0

apply_lens_power(optic[, ignore_wavefront]) Adds lens wavefront curvature to the wavefront cor-
responding to the lens’ focal length f_l, and updates
the Gaussian beam parameters of the wavefront.

coordinates() Return Y, X coordinates for this wavefront, in the
manner of numpy.indices()

display(*args, **kwargs) Display wavefront on screen
from_wavefront(wavefront) Convert a Fraunhofer type wavefront object to a

Fresnel one
planar_range(z) Returns True if the input range z is within the

Rayleigh range of the waist.
propagate_direct(z) Implements the direct propagation algorithm as de-

scribed in Andersen & Enmark (2011).
propagate_fresnel(delta_z[, display_intermed]) Top-level routine for Fresnel diffraction propagation
propagate_to(optic, distance) Propagates a wavefront object to the next optic in the

list, after some separation distance (which might be
zero).

pupil_coordinates(x, y, pixelscale) Utility function to generate coordinates arrays for a
pupil plane wavefront

r_c([z]) The gaussian beam radius of curvature as a function
of distance z

spot_radius([z]) radius of a propagating gaussian wavefront, at a dis-
tance z

Attributes Documentation

angular_coordinates = False
Should coordinates be expressed in arcseconds instead of meters at the current plane?

divergence
Half-angle divergence of the gaussian beam

I.e. the angle between the optical axis and the beam radius (at a large distance from the waist) in radians.

fov
FOV in arcseconds, if applicable

param_str
Formatted string of gaussian beam parameters.

pixelscale
Pixelscale, in meters by default or in arcseconds if angular_coordinates is True

waists
each [z_w_0,w_0] for each waist generated by an optic

z_r
Rayleigh distance for the gaussian beam, based on current beam waist and wavelength.

I.e. the distance along the propagation direction from the beam waist at which the area of the cross section
has doubled. The depth of focus is conventionally twice this distance.

Methods Documentation

apply_lens_power(optic, ignore_wavefront=False)
Adds lens wavefront curvature to the wavefront corresponding to the lens’ focal length f_l, and updates
the Gaussian beam parameters of the wavefront.

144 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

optic
[QuadraticLens] An optic

ignore_wavefront
[boolean] If True then only gaussian beam propagation parameters will be updated and the wavefront
surface will not be calculated. Useful for quick calculations of gaussian laser beams

coordinates()
Return Y, X coordinates for this wavefront, in the manner of numpy.indices()

This function knows about the offset resulting from FFTs. Use it whenever computing anything measured
in wavefront coordinates.

The behavior for Fresnel wavefronts is slightly different from Fraunhofer wavefronts, in that the optical
axis is not the exact center of an array (the corner between pixels for an even number of pixels), but rather is
a specific pixel (e.g. pixel 512,512 for a 1024x1024 array). This is for consistency with the array indexing
convention used in FFTs since this class depends on FFTs rather than the more flexible matrix DFTs for
its propagation.

For Fresnel wavefronts, this depends on the focal length to get the image scale right.

Y, X
[array_like] Wavefront coordinates in either meters or arcseconds for pupil and image, respectively

display(*args, **kwargs)
Display wavefront on screen

what
[string] What to display. Must be one of {intensity, phase, best}. ‘Best’ implies to display the phase
if there is nonzero OPD, or else display the intensity for a perfect pupil.

nrows
[int] Number of rows to display in current figure (used for showing steps in a calculation)

row
[int] Which row to display this one in? If set to None, use the wavefront’s self.current_plane_index

vmin, vmax
[floats] min and maximum values to display. When left unspecified, these default to [0, in-
tens.max()] for linear (scale=’linear’) intensity plots, [1e-6*intens.max(), intens.max()] for logarith-
mic (scale=’log’) intensity plots, and [-0.25, 0.25] waves for phase plots.

scale
[string] ‘log’ or ‘linear’, to define the desired display scale type for intensity. Default is log for image
planes, linear otherwise.

imagecrop
[float, optional] Crop the displayed image to a smaller region than the full array. For image planes in
angular coordinates, this is given in units of arcseconds. The default is 5, so only the innermost 5x5
arcsecond region will be shown. This default may be changed in the POPPY config file. If the image
size is < 5 arcsec then the entire image is displayed. For planes in linear physical coordinates such
as pupils, this is given in units of meters, and the default is no cropping (i.e. the entire array will be
displayed unless this keyword is set explicitly).

showpadding
[bool, optional] For wavefronts that have been padded with zeros for oversampling, show the entire
padded arrays, or just the good parts? Default is False, to show just the central region of interest.

colorbar
[bool] Display colorbar

12.1. poppy Package 145

poppy Documentation, Release 0.9.0

crosshairs
[bool] Display a crosshairs indicator showing the axes centered on (0,0)

ax
[matplotlib Axes, optional] axes to display into. If not set, will create new axes.

use_angular_coordinates
[bool, optional] Should the axes be labeled in angular units of arcseconds? This is used by Fresnel-
Wavefront, where non-angular coordinates are possible everywhere. When using Fraunhofer propa-
gation, this should be left as None so that the coordinates are inferred from the planetype attribute.
(Default: None, infer coordinates from planetype)

figure
[matplotlib figure] The current figure is modified.

classmethod from_wavefront(wavefront)
Convert a Fraunhofer type wavefront object to a Fresnel one

Note, for now this function only works if the input wavefront is at a pupil plane, so the Fraunhofer wave-
front has pixelscale in meters/pix rather than arcsec/pix. Conversion from image planes may be added
later.

wavefront
[Wavefront] The (Fraunhofer-type) wavefront to be converted

planar_range(z)
Returns True if the input range z is within the Rayleigh range of the waist.

z
[float] distance from the beam waist

propagate_direct(z)
Implements the direct propagation algorithm as described in Andersen & Enmark (2011). Works best for
far field propagation. Not part of the Gaussian beam propagation method.

z
[float or Astropy.Quantity length] the distance from the current location to propagate the beam.

propagate_fresnel(delta_z, display_intermed=False)
Top-level routine for Fresnel diffraction propagation

Each spherical wavefront is propagated to a waist and then to the next appropriate plane
(spherical or planar).

delta_z
[float] the distance from the current location to propagate the beam.

display_intermed
[boolean] If True, display the complex start, intermediates waist and end surfaces.

propagate_to(optic, distance)
Propagates a wavefront object to the next optic in the list, after some separation distance (which might be
zero). Modifies this wavefront object itself.

Transformations between most planes use Fresnel propagation. If the target plane is an image plane, the
output wavefront will be set to provide its coordinates in arcseconds based on its focal length, but it retains
its internal dimensions in meters for future Fresnel propagations. Transformations to a Detector plane are
handled separately to allow adjusting the pixel scale to match the target scale. Transformations from any
frame through a rotation plane simply rotate the wavefront accordingly.

146 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

optic
[OpticalElement] The optic to propagate to. Used for determining the appropriate optical plane.

distance
[astropy.Quantity of dimension length] separation distance of this optic relative to the prior optic in
the system.

static pupil_coordinates(x, y, pixelscale)
Utility function to generate coordinates arrays for a pupil plane wavefront

x, y
[array_like] pixel indices

pixelscale
[float or 2-tuple of floats] the pixel scale in meters/pixel, optionally different in X and Y

Y, X
[array_like] Wavefront coordinates in either meters or arcseconds for pupil and image, respectively

r_c(z=None)
The gaussian beam radius of curvature as a function of distance z

z
[float, optional] Distance along the optical axis. If not specified, the wavefront’s current z coordinate
will be used, returning the beam radius of curvature at the current position.

Astropy.units.Quantity of dimension length

spot_radius(z=None)
radius of a propagating gaussian wavefront, at a distance z

z
[float, optional] Distance along the optical axis. If not specified, the wavefront’s current z coordinate
will be used, returning the beam radius at the current position.

Astropy.units.Quantity of dimension length

FresnelOpticalSystem

class poppy.FresnelOpticalSystem(name=’unnamed system’, pupil_diameter=<Quantity 1. m>,
npix=1024, beam_ratio=0.5, verbose=True)

Bases: poppy.poppy_core.BaseOpticalSystem

Class representing a series of optical elements, through which light can be propagated using the Fresnel formal-
ism.

This is comparable to the “regular” (Fraunhofer-domain) OpticalSystem, but adds functionality for propagation
to arbitrary optical planes rather than just pupil and image planes.

name
[string] descriptive name of optical system

pupil_diameter
[astropy.Quantity of dimension length] Diameter of entrance pupil

npix
[int] Number of pixels across the entrance pupil by default 1024

beam_ratio
[float] Padding factor for the entrance pupil; what fraction of the array should correspond to the entrance
pupil. Default is 0.5, which corresponds to Nyquist sampling (2 pixels per resolution element)

12.1. poppy Package 147

poppy Documentation, Release 0.9.0

verbose
[bool] whether to be more verbose with log output while computing

Methods Summary

add_detector([pixelscale, fov_pixels, distance]) Add a detector to the optical system
add_optic([optic, distance, index]) Add an optic to the optical system
describe() Print out a string table describing all planes in an op-

tical system
input_wavefront([wavelength]) Create a Wavefront object suitable for sending

through a given optical system.
propagate(wavefront[, normalize, . . .]) Core low-level routine for propagating a wavefront

through an optical system

Methods Documentation

add_detector(pixelscale=<Quantity 10. micron / pix>, fov_pixels=<Quantity 10. pix>, dis-
tance=<Quantity 0. m>)

Add a detector to the optical system

pixelscale
[astropy.Quantity, with units micron/pixel or equivalent] The pixel scale at the detector

fov_pixels
[astropy.Quantity with units pixel] The number of pixels per axis of the detector. Assumes square
detector.

distance
[astropy.Quantity of dimension length] separation distance of this optic relative to the prior optic in
the system.

add_optic(optic=None, distance=<Quantity 0. m>, index=None)
Add an optic to the optical system

optic
[OpticalElement instance] Some optic

distance
[astropy.Quantity of dimension length] separation distance of this optic relative to the prior optic in
the system.

index
[int] Index at which to insert the new optical element

describe()
Print out a string table describing all planes in an optical system

input_wavefront(wavelength=<Quantity 1.e-06 m>)
Create a Wavefront object suitable for sending through a given optical system.

Uses self.source_offset to assign an off-axis tilt, if requested. (FIXME does not work for Fresnel yet)

wavelength
[float] Wavelength in meters

wavefront
[poppy.fresnel.FresnelWavefront instance] A wavefront appropriate for passing through this optical
system.

148 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

propagate(wavefront, normalize=’none’, return_intermediates=False, display_intermediates=False)
Core low-level routine for propagating a wavefront through an optical system

See docstring of OpticalSystem.propagate for details

WavefrontError

class poppy.WavefrontError(**kwargs)
Bases: poppy.optics.AnalyticOpticalElement

A base class for different sources of wavefront error

Analytic optical elements that represent wavefront error should derive from this class and override methods
appropriately. Defined to be a pupil-plane optic.

Methods Summary

get_opd(wave) Construct the optical path difference array for a
wavefront error source as evaluated across the pupil
for an input wavefront wave

peaktovalley() Peak-to-valley wavefront error induced by this sur-
face

rms() RMS wavefront error induced by this surface

Methods Documentation

get_opd(wave)
Construct the optical path difference array for a wavefront error source as evaluated across the pupil for
an input wavefront wave

wave
[Wavefront] Wavefront object with a coordinates method that returns (y, x) coordinate arrays in
meters in the pupil plane

peaktovalley()
Peak-to-valley wavefront error induced by this surface

rms()
RMS wavefront error induced by this surface

ParameterizedWFE

class poppy.ParameterizedWFE(name=’Parameterized Distortion’, coefficients=None, radius=<Quantity
1. m>, basis_factory=None, **kwargs)

Bases: poppy.wfe.WavefrontError

Define an optical element in terms of its distortion as decomposed into a set of orthonormal basis functions
(e.g. Zernikes, Hexikes, etc.). Included basis functions are normalized such that user-provided coefficients
correspond to meters RMS wavefront aberration for that basis function.

coefficients
[iterable of numbers] The contribution of each term to the final distortion, in meters RMS wavefront error.
The coefficients are interpreted as indices in the order of Noll et al. 1976: the first term corresponds to j=1,
second to j=2, and so on.

12.1. poppy Package 149

https://docs.python.org/3/library/wave.html#module-wave
https://docs.python.org/3/library/wave.html#module-wave

poppy Documentation, Release 0.9.0

radius
[float] Pupil radius, in meters. Defines the region of the input wavefront array over which the distortion
terms will be evaluated. For non-circular pupils, this should be the circle circumscribing the actual pupil
shape.

basis_factory
[callable] basis_factory will be called with the arguments nterms, rho, theta, and outside.

nterms specifies how many terms to compute, starting with the j=1 term in the Noll indexing convention
for nterms = 1 and counting up.

rho and theta are square arrays holding the rho and theta coordinates at each pixel in the pupil plane. rho
is normalized such that rho == 1.0 for pixels at radius meters from the center.

outside contains the value to assign pixels outside the radius rho == 1.0. (Always 0.0, but provided for
compatibility with zernike.zernike_basis and zernike.hexike_basis.)

Methods Summary

get_opd(wave) Construct the optical path difference array for a
wavefront error source as evaluated across the pupil
for an input wavefront wave

Methods Documentation

get_opd(wave)
Construct the optical path difference array for a wavefront error source as evaluated across the pupil for
an input wavefront wave

wave
[Wavefront] Wavefront object with a coordinates method that returns (y, x) coordinate arrays in
meters in the pupil plane

ZernikeWFE

class poppy.ZernikeWFE(name=’Zernike WFE’, coefficients=None, radius=None, aperture_stop=False,
**kwargs)

Bases: poppy.wfe.WavefrontError

Define an optical element in terms of its Zernike components by providing coefficients for each Zernike term
contributing to the analytic optical element.

coefficients
[iterable of floats] Specifies the coefficients for the Zernike terms, ordered according to the convention of
Noll et al. JOSA 1976. The coefficient is in meters of optical path difference (not waves).

radius
[float] Pupil radius, in meters, over which the Zernike terms should be computed such that rho = 1 at r =
radius.

Methods Summary

get_opd(wave) Parameters
Continued on next page

150 Chapter 12. API Reference

https://docs.python.org/3/library/wave.html#module-wave
https://docs.python.org/3/library/wave.html#module-wave

poppy Documentation, Release 0.9.0

Table 49 – continued from previous page
get_transmission(wave) Note that this is the amplitude transmission, not the

total intensity transmission.

Methods Documentation

get_opd(wave)

wave
[poppy.Wavefront (or float)] Incoming Wavefront before this optic to set wavelength and scale, or a
float giving the wavelength in meters for a temporary Wavefront used to compute the OPD.

get_transmission(wave)
Note that this is the amplitude transmission, not the total intensity transmission.

SineWaveWFE

class poppy.SineWaveWFE(name=’Sine WFE’, spatialfreq=1.0, amplitude=1e-06, phaseoffset=0, **kwargs)
Bases: poppy.wfe.WavefrontError

A single sine wave ripple across the optic

Specified as a a spatial frequency in cycles per meter, an optional phase offset in cycles, and an amplitude.

By default the wave is oriented in the X direction. Like any AnalyticOpticalElement class, you can also specify
a rotation parameter to rotate the direction of the sine wave.

(N.b. we intentionally avoid letting users specify this in terms of a spatial wavelength because that would risk
potential ambiguity with the wavelength of light.)

Methods Summary

get_opd(wave) Parameters

Methods Documentation

get_opd(wave)

wave
[poppy.Wavefront (or float)] Incoming Wavefront before this optic to set wavelength and scale, or a
float giving the wavelength in meters for a temporary Wavefront used to compute the OPD.

StatisticalPSDWFE

class poppy.StatisticalPSDWFE(name=’PSD WFE’, index=3.0, wfe=<Quantity 50. nm>, ra-
dius=<Quantity 1. m>, seed=None, **kwargs)

Bases: poppy.wfe.WavefrontError

Statistical PSD WFE class from power law for optical noise.

name
[string] name of the optic

12.1. poppy Package 151

poppy Documentation, Release 0.9.0

index: float
negative power law spectra index, defaults to 3

wfe: astropy quantity
wfe in linear astropy units, defaults to 50 nm

radius: astropy quantity
radius of optic in linear astropy units, defaults to 1 m

seed
[integer] seed for the random phase screen generator

Methods Summary

get_opd(wave) Parameters

Methods Documentation

get_opd(wave)

wave
[poppy.Wavefront (or float)] Incoming Wavefront before this optic to set wavelength and scale, or a
float giving the wavelength in meters for a temporary Wavefront used to compute the OPD.

152 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

12.1.3 Class Inheritance Diagram

ABC

BaseOpticalSystem

BaseWavefront

AnalyticImagePlaneElement

AnnularFieldStop

BandLimitedCoronagraph

BarOcculter

CircularPhaseMask

HexagonFieldStop

IdealFQPM

RectangularFieldStop

AnalyticOpticalElement

SecondaryObscuration

CircularAperture

CompoundAnalyticOptic

FQPM_FFT_aligner

GaussianAperture

HexagonAperture

InverseTransmission

KnifeEdge

MultiHexagonAperture

NgonAperture

WavefrontError

QuadPhase

RectangleAperture

ScalarTransmission

OpticalElement

ArrayOpticalElement

CoordinateTransform

Detector

FITSOpticalElement

CircularOcculter

AsymmetricSecondaryObscuration

OpticalSystem

FresnelOpticalSystem

FresnelWavefront

Wavefront

ThinLens

CompoundOpticalSystem

Rotation

Instrument

ParameterizedWFE

SineWaveWFE

StatisticalPSDWFE

ZernikeWFE

QuadraticLens

SquareAperture

SquareFieldStop

12.2 poppy.zernike Module

Zernike & Related Polynomials

This module implements several sets of orthonormal polynomials for measuring and modeling wavefronts:

• the classical Zernike polynomials, which are orthonormal over the unit circle.

12.2. poppy.zernike Module 153

poppy Documentation, Release 0.9.0

• ‘Hexikes’, orthonormal over the unit hexagon

• tools for creating a custom set orthonormal over a numerically supplied JWST pupil,
or other generalized pupil

• Segmented bases with piston, tip, & tilt of independent hexagonal segments.

For definitions of Zernikes and a basic introduction to why they are a useful way to

parametrize data, see e.g.
Hardy’s ‘Adaptive Optics for Astronomical Telescopes’ section 3.5.1 or even just the Wikipedia page is pretty
decent.

For definition of the hexagon and arbitrary pupil polynomials, a good reference to the

Gram-Schmidt orthonormalization process as applied to this case is
Mahajan and Dai, 2006. Optics Letters Vol 31, 16, p 2462:

12.2.1 Functions

R(n, m, rho) Compute R[n, m], the Zernike radial polynomial
cached_zernike1 Compute Zernike based on Noll index j, using an LRU

cache for efficiency.
hex_aperture([npix, rho, theta, vertical, . . .]) Return an aperture function for a hexagon.
hexike_basis([nterms, npix, rho, theta, . . .]) Return a list of hexike polynomials 1-N following the

method of Mahajan and Dai 2006 for numerical or-
thonormalization

noll_indices(j) Convert from 1-D to 2-D indexing for Zernikes or
Hexikes.

opd_expand(opd[, aperture, nterms, basis]) Given a wavefront OPD map, return the list of coeffi-
cients in a given basis set (by default, Zernikes) that best
fit the OPD map.

opd_expand_nonorthonormal(opd[, aperture, . . .]) Modified version of opd_expand, for cases where the
basis function is not orthonormal, for instance using the
regular Zernike functions on obscured apertures.

opd_expand_segments(opd[, aperture, nterms, . . .]) Expand OPD into a basis defined by segments, typically
with piston, tip, & tilt of each.

opd_from_zernikes(coeffs[, basis, aperture, . . .]) Synthesize an OPD from a set of coefficients
str_zernike(n, m) Return analytic expression for a given Zernike in LaTeX

syntax
zern_name(i) Return a human-readable text name corresponding to

some Zernike term as specified by j, the index
zernike(n, m[, npix, rho, theta, outside, . . .]) Return the Zernike polynomial Z[m,n] for a given pupil.
zernike1(j, **kwargs) Return the Zernike polynomial Z_j for pupil points

{r,theta}.
zernike_basis([nterms, npix, rho, theta]) Return a cube of Zernike terms from 1 to N each as a

2D array showing the value at each point.
arbitrary_basis(aperture[, nterms, rho, . . .]) Orthonormal basis on arbitrary aperture, via Gram-

Schmidt

R

poppy.zernike.R(n, m, rho)
Compute R[n, m], the Zernike radial polynomial

154 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

n, m
[int] Zernike function degree

rho
[array] Image plane radial coordinates. rho should be 1 at the desired pixel radius of the unit circle

zernike.cached_zernike1

zernike.cached_zernike1
Compute Zernike based on Noll index j, using an LRU cache for efficiency. Refer to the zernike1 docstring
for details.

Note: all arguents should be plain ints, tuples, floats etc rather than Astropy Quantities.

hex_aperture

poppy.zernike.hex_aperture(npix=1024, rho=None, theta=None, vertical=False, outside=0)
Return an aperture function for a hexagon.

Note that the flat sides are aligned with the X direction by default. This is appropriate for the individual hex
PMSA segments in JWST.

npix
[integer] Size, in pixels, of the aperture array. The hexagon will span the whole array from edge to edge in
the direction aligned with its flat sides. (Ignored when rho and theta are supplied.)

rho, theta
[2D numpy arrays, optional] For some square aperture, rho and theta contain each pixel’s coordinates in
polar form. The hexagon will be defined such that it can be circumscribed in a rho = 1 circle.

vertical
[bool] Make flat sides parallel to the Y axis instead of the default X.

outside
[float] Value for pixels outside the hexagonal aperture. Default is np.nan, but you may also find it useful
for this to be 0.0 sometimes.

hexike_basis

poppy.zernike.hexike_basis(nterms=15, npix=512, rho=None, theta=None, aperture=None, verti-
cal=False, outside=nan)

Return a list of hexike polynomials 1-N following the method of Mahajan and Dai 2006 for numerical orthonor-
malization

This function orders the hexikes in a similar way as the Zernikes.

See also hexike_basis_wss for an alternative implementation.

nterms
[int] Number of hexike terms to compute, starting from piston. (e.g. nterms=1 would return only the
hexike analog to the Zernike piston term.) Default is 15.

npix
[int] Size, in pixels, of the aperture array. The hexagon will span the whole array from edge to edge in the
direction aligned with its flat sides.

12.2. poppy.zernike Module 155

poppy Documentation, Release 0.9.0

rho, theta
[2D numpy arrays, optional] For some square aperture, rho and theta contain each pixel’s coordinates in
polar form. The hexagon will be defined such that it can be circumscribed in a rho = 1 circle.

vertical
[bool] Make flat sides parallel to the Y axis instead of the default X. Default is False.

outside
[float] Value for pixels outside the hexagonal aperture. Default is np.nan, but you may also find it useful
for this to be 0.0 sometimes.

aperture
[2D numpy array, optional] Aperture mask for which pixels are included within the aperture. All positive
nonzero values are considered within the aperture; any pixels with zero, negative, or NaN values will be
considered outside the aperture, and set equal to the ‘outside’ parameter value. If this parameter is not set,
the aperture will be inferred from the provided rho and theta arrays.

noll_indices

poppy.zernike.noll_indices(j)
Convert from 1-D to 2-D indexing for Zernikes or Hexikes.

j
[int] Zernike function ordinate, following the convention of Noll et al. JOSA 1976. Starts at 1.

opd_expand

poppy.zernike.opd_expand(opd, aperture=None, nterms=15, basis=<function zernike_basis>, **kwargs)
Given a wavefront OPD map, return the list of coefficients in a given basis set (by default, Zernikes) that best
fit the OPD map.

Note that this implementation of the function treats the Zernikes as an orthonormal basis, which is only true on
the unobscured unit circle. See also opd_expand_nonorthonormal for an alternative approach for basis vectors
that are not orthonormal, or opd_expand_segments for basis vectors defined over physically disjoint segments.

opd
[2D numpy.ndarray] The wavefront OPD map to expand in terms of the requested basis. Must be square.

aperture
[2D numpy.ndarray, optional] Aperture mask for which pixels are included within the aperture. NOTE -
this is handed through to the basis function (see basis parameter) which is responsible for implementing
this masking, if appropriate. All positive nonzero values are considered within the aperture; any pixels
with zero, negative, or NaN values will be considered outside the aperture, and set equal to the ‘outside’
parameter value. If this parameter is not set, the aperture will be inferred from the finite (i.e. non-NaN)
pixels in the OPD array.

nterms
[int] Number of terms to use. (Default: 15)

basis
[callable, optional] Callable (e.g. a function) that generates a sequence of basis arrays given arguments
nterms, npix, and outside. Default is poppy.zernike.zernike_basis.

Additional keyword arguments to this function are passed through to the basis callable.

Note: Recovering coefficients used to generate synthetic/test data depends greatly on the sampling (as one might
expect). Generating test data using zernike_basis with npix=256 and passing the result through opd_expand
reproduces the input coefficients within <0.1%.

156 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

coeffs
[list] List of coefficients (of length nterms) from which the input OPD map can be constructed in the given
basis. (No additional unit conversions are performed. If the input wavefront is in waves, coeffs will be
in waves.) Note that the first coefficient (element 0 in Python indexing) corresponds to the Z=1 Zernike
piston term, and so on.

opd_expand_nonorthonormal

poppy.zernike.opd_expand_nonorthonormal(opd, aperture=None, nterms=15, ba-
sis=<functools._lru_cache_wrapper object>, iterations=5,
verbose=False, **kwargs)

Modified version of opd_expand, for cases where the basis function is not orthonormal, for instance using the
regular Zernike functions on obscured apertures.

This version subtracts off each term as it is fit, to avoid over-fitting the same WFE multiple times. It also iterates
the fitting multiple times by re-fitting the residuals, in order to allow for capturing any WFE which is missed by
the first pass at fitting.

Based on various empirical experimentation for what is necessary to get reasonable behavior in this non-ideal
case. Factors to consider:

1) Masking to use just pixels good in both the zernike unit circle and the asymmetric numerical aperture

2) Subtracting off the fit terms as you go, so as to not fit the same WFE multiple times

3) Iterating multiples by re-fitting the residual, to include as much WFE as possible.

opd
[2d ndarray] the OPD you want to fit

aperture
[2D numpy array, optional] Aperture mask for which pixels are included within the aperture. All positive
nonzero values are considered within the aperture; any pixels with zero, negative, or NaN values will be
considered outside the aperture, and set equal to the ‘outside’ parameter value. If this parameter is not set,
the aperture will be inferred from the finite (i.e. non-NaN) pixels in the OPD array.

nterms
[int] number of terms to fit

basis
[function] which basis function to use. Defaults to Zernike

iterations
[int] Number of iterations for convergence. Default is 5

opd_expand_segments

poppy.zernike.opd_expand_segments(opd, aperture=None, nterms=15, basis=None, iterations=2, ver-
bose=False, **kwargs)

Expand OPD into a basis defined by segments, typically with piston, tip, & tilt of each.

Similar algorithm as opd_expand_nonorthonormal, but adjusted slightly for spatially disjoint basis vectors, and
also for different expected normalization of the piston and tip/tilt basis terms.

The segment_piston_basis and segment_ptt_basis functions are intended for use with this, but it should be
generally applicable to higher order hexikes or zernikes defined per segment as well.

12.2. poppy.zernike Module 157

poppy Documentation, Release 0.9.0

Rather than supplying directly e.g. the segment_ptt_basis function with its default parameters, you will likely
want to provide a custom basis wrapper function that sets the number of segments, segment size, etc. as appro-
priate for your chosen segmented aperture.

opd
[2D numpy.ndarray] The wavefront OPD map to expand in terms of the requested basis. Must be square.

aperture
[2D numpy.ndarray, optional] Aperture mask for which pixels are included within the aperture. NOTE -
this is handed through to the basis function (see basis parameter) which is responsible for implementing
this masking, if appropriate. All positive nonzero values are considered within the aperture; any pixels
with zero, negative, or NaN values will be considered outside the aperture, and set equal to the ‘outside’
parameter value. If this parameter is not set, the aperture will be inferred from the finite (i.e. non-NaN)
pixels in the OPD array.

nterms
[int] Number of terms to use. (Default: 15)

basis
[callable, optional] Callable (e.g. a function) that generates a sequence of basis arrays given argu-
ments nterms, npix, and outside. This should be an instance of Segment_Piston_Basis() or Seg-
ment_PTT_Basis(), or an equivalent.

opd_from_zernikes

poppy.zernike.opd_from_zernikes(coeffs, basis=<functools._lru_cache_wrapper object>, aper-
ture=None, outside=nan, **kwargs)

Synthesize an OPD from a set of coefficients

coeffs
[list or ndarray] Coefficients for the Zernike terms

basis
[callable] Which basis set. Defaults to Zernike

aperture
[2D ndarray, optional] Aperture mask for which pixels are included within the aperture. All positive
nonzero values are considered within the aperture; any pixels with zero, negative, or NaN values will be
considered outside the aperture, and set equal to the ‘outside’ parameter value. If this parameter is not set,
the aperture will be default to the 2D unit circle.

outside
[float] Value for pixels outside the specified aperture. Default is np.nan, but you may also find it useful
for this to be 0.0 sometimes.

Other parameters are supported via **kwargs, in particular setting the size of the OPD via npix.

opd = opd_from_zernikes([0,0,-5,1,0,4,0,8], npix=512)

str_zernike

poppy.zernike.str_zernike(n, m)
Return analytic expression for a given Zernike in LaTeX syntax

158 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

zern_name

poppy.zernike.zern_name(i)
Return a human-readable text name corresponding to some Zernike term as specified by j, the index

Only works up to term 22, i.e. 5th order spherical aberration.

zernike

poppy.zernike.zernike(n, m, npix=100, rho=None, theta=None, outside=nan, noll_normalize=True,
**kwargs)

Return the Zernike polynomial Z[m,n] for a given pupil.

For this function the desired Zernike is specified by 2 indices m and n. See zernike1 for an equivalent function
in which the polynomials are ordered by a single index.

You may specify the pupil in one of two ways:

zernike(n, m, npix)
where npix specifies a pupil diameter in pixels. The returned pupil will be a circular aperture
with this diameter, embedded in a square array of size npix*npix.

zernike(n, m, rho=r, theta=theta)
Which explicitly provides the desired pupil coordinates as arrays r and theta. These need not be
regular or contiguous.

The expressions for the Zernike terms follow the normalization convention of Noll et al. JOSA 1976 unless the
noll_normalize argument is False.

n, m
[int] Zernike function degree

npix
[int] Desired diameter for circular pupil. Only used if rho and theta are not provided.

rho, theta
[array_like] Image plane coordinates. rho should be 0 at the origin and 1.0 at the edge of the circular pupil.
theta should be the angle in radians.

outside
[float] Value for pixels outside the circular aperture (rho > 1). Default is np.nan, but you may also find it
useful for this to be 0.0 sometimes.

noll_normalize
[bool] As defined in Noll et al. JOSA 1976, the Zernike definition is modified such that the integral of Z[n,
m] * Z[n, m] over the unit disk is pi exactly. To omit the normalization constant, set this to False. Default
is True.

zern
[2D numpy array] Z(m,n) evaluated at each (rho, theta)

zernike1

poppy.zernike.zernike1(j, **kwargs)
Return the Zernike polynomial Z_j for pupil points {r,theta}.

For this function the desired Zernike is specified by a single index j. See zernike for an equivalent function in
which the polynomials are ordered by two parameters m and n.

12.2. poppy.zernike Module 159

poppy Documentation, Release 0.9.0

Note that there are multiple contradictory conventions for labeling Zernikes with one single index. We follow
that of Noll et al. JOSA 1976.

j
[int] Zernike function ordinate, following the convention of Noll et al. JOSA 1976

Additional arguments are defined as in poppy.zernike.zernike.

zern
[2D numpy array] Z_j evaluated at each (rho, theta)

zernike_basis

poppy.zernike.zernike_basis(nterms=15, npix=512, rho=None, theta=None, **kwargs)
Return a cube of Zernike terms from 1 to N each as a 2D array showing the value at each point. (Regions
outside the unit circle on which the Zernike is defined are initialized to zero.)

nterms
[int, optional] Number of Zernike terms to return, starting from piston. (e.g. nterms=1 would return only
the Zernike piston term.) Default is 15.

npix
[int] Desired pixel diameter for circular pupil. Only used if rho and theta are not provided.

rho, theta
[array_like] Image plane coordinates. rho should be 0 at the origin and 1.0 at the edge of the circular pupil.
theta should be the angle in radians.

Other parameters are passed through to poppy.zernike.zernike and are documented there.

arbitrary_basis

poppy.zernike.arbitrary_basis(aperture, nterms=15, rho=None, theta=None, outside=nan)
Orthonormal basis on arbitrary aperture, via Gram-Schmidt

Return a cube of Zernike-like terms from 1 to N, calculated on an arbitrary aperture, each as a 2D array showing
the value at each point. (Regions outside the unit circle on which the Zernike is defined are initialized to zero.)

This implements Gram-Schmidt orthonormalization numerically, starting from the regular Zernikes, to generate
an orthonormal basis on some other aperture

aperture
[2D array_like] 2D array representing the arbitrary aperture. All positive nonzero values are considered
within the aperture; any pixels with zero, negative, or NaN values will be considered outside the aperture,
and set equal to the ‘outside’ parameter value.

nterms
[int, optional] Number of Zernike terms to return, starting from piston. (e.g. nterms=1 would return only
the Zernike piston term.) Default is 15.

rho, theta
[array_like, optional] Image plane coordinates. rho should be 0 at the origin and 1.0 at the edge of the
pupil. theta should be the angle in radians.

outside
[float] Value for pixels outside the specified aperture. Default is np.nan, but you may also find it useful
for this to be 0.0 sometimes.

160 Chapter 12. API Reference

poppy Documentation, Release 0.9.0

12.2.2 Classes

Segment_Piston_Basis([rings, flattoflat, . . .]) Eigenbasis of segment pistons, tips, tilts.
Segment_PTT_Basis([rings, flattoflat, gap, . . .]) Eigenbasis of segment pistons, tips, tilts.

Segment_Piston_Basis

class poppy.zernike.Segment_Piston_Basis(rings=2, flattoflat=<Quantity 1. m>, gap=<Quantity 1.
cm>, center=False, pupil_diam=None)

Bases: poppy.zernike.Segment_PTT_Basis

Eigenbasis of segment pistons, tips, tilts. (Or of pistons only using the Segment_Piston_Basis subclass.)

The aperture geometry is specified identically to the MultiHexagonAperture class. Set that when creating an
instance of this class, then you can call the resulting function object to generate a basis set with the desired
sampling, or pass it to the opd_from_zernikes or opd_expand_segments functions.

The basis is generated over a square array that exactly circumscribes the hexagonal aperture.

rings
[int] Number of rings of segments

flattoflat
[float or astropy.Quantity length] Size of a single segment

gap
[float or astropy.Quantity length] Gap between adjacent segments

center
[bool] Include the center segment?

pupil_diam
[float oar astropy.Quantity length] Diameter of the array on which to generate the basis; by default this
is chosen to circumscribe the multihex aperture given the specified segment and gap sizes and number of
segments.

Methods Summary

__call__([nterms, npix, outside]) Generate piston-only basis ndarray for the specified
aperture

Methods Documentation

__call__(nterms=None, npix=512, outside=nan)
Generate piston-only basis ndarray for the specified aperture

nterms
[int] Number of terms. Set to 3x the number of segments.

npix
[int] Size, in pixels, of the aperture array.

outside
[float] Value for pixels outside the specified aperture. Default is np.nan, but you may also find it
useful for this to be 0.0 sometimes.

12.2. poppy.zernike Module 161

poppy Documentation, Release 0.9.0

Segment_PTT_Basis

class poppy.zernike.Segment_PTT_Basis(rings=2, flattoflat=<Quantity 1. m>, gap=<Quantity 1. cm>,
center=False, pupil_diam=None)

Bases: object

Eigenbasis of segment pistons, tips, tilts. (Or of pistons only using the Segment_Piston_Basis subclass.)

The aperture geometry is specified identically to the MultiHexagonAperture class. Set that when creating an
instance of this class, then you can call the resulting function object to generate a basis set with the desired
sampling, or pass it to the opd_from_zernikes or opd_expand_segments functions.

The basis is generated over a square array that exactly circumscribes the hexagonal aperture.

rings
[int] Number of rings of segments

flattoflat
[float or astropy.Quantity length] Size of a single segment

gap
[float or astropy.Quantity length] Gap between adjacent segments

center
[bool] Include the center segment?

pupil_diam
[float oar astropy.Quantity length] Diameter of the array on which to generate the basis; by default this
is chosen to circumscribe the multihex aperture given the specified segment and gap sizes and number of
segments.

Methods Summary

__call__([nterms, npix, outside]) Generate PTT basis ndarray for the specified aper-
ture

aperture([npix]) Return the overall aperture across all segments

Methods Documentation

__call__(nterms=None, npix=512, outside=nan)
Generate PTT basis ndarray for the specified aperture

nterms
[int] Number of terms. Set to 3x the number of segments.

npix
[int] Size, in pixels, of the aperture array.

outside
[float] Value for pixels outside the specified aperture. Default is np.nan, but you may also find it
useful for this to be 0.0 sometimes.

aperture(npix=512)
Return the overall aperture across all segments

162 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#object

poppy Documentation, Release 0.9.0

12.2.3 Class Inheritance Diagram

Segment_PTT_Basis Segment_Piston_Basis

12.2. poppy.zernike Module 163

poppy Documentation, Release 0.9.0

164 Chapter 12. API Reference

CHAPTER 13

About POPPY

13.1 Acknowledging or citing POPPY

If you use this package for work or research presented in a publication (whether directly, or as a dependency to another
package), we would be grateful if you could include the following acknowledgment:

This research made use of POPPY, an open-source optical propagation Python package originally devel-
oped for the James Webb Space Telescope project (Perrin, 2012).

You may also cite the software code record at the Astrophysics Source Code Library.

13.2 The Team

POPPY is developed primarily by a team of astronomers at the Space Telescope Science Insitute, but is open to
contributions from scientists and software developers around the world. Development takes place on Github at http:
//github.com/spacetelescope/poppy . See that page for the most up-to-date list of contributors.

13.2.1 Direct contributors to POPPY code

• Marshall Perrin (@mperrin)

• Joseph Long (@josephoenix)

• Ewan Douglas (@douglase)

• Shannon Osborne (@shanosborne)

• Neil Zimmerman (@neilzim)

• Anand Sivaramakrishnan (@anand0xff)

• Maciek Grochowicz (@maciekgroch)

• Phillip Springer (@daphil)

165

http://adsabs.harvard.edu/abs/2012SPIE.8442E..3DP
http://ascl.net/1602.018
http://www.stsci.edu/
http://github.com/spacetelescope/poppy
http://github.com/spacetelescope/poppy
https://github.com/mperrin
https://github.com/josephoenix
https://github.com/douglase
https://github.com/shanosborne
https://github.com/neilzim
https://github.com/anand0xff
https://github.com/maciekgroch
https://github.com/daphil

poppy Documentation, Release 0.9.0

• Ted Corcovilos (@corcoted)

• Kyle Douglass (@kmdouglas)

• Christine Slocum (@cslocum)

• Matt Mechtley (@mmechtley)

• Scott Will (@sdwill)

• Iva Laginja (@ivalaginja)

• Mike Fitzgerald (@astrofitz)

13.2.2 Indirect Contributors (algorithms, advice, ideas, inspirations)

• Erin Elliot

• Remi Soummer

• Laurent Pueyo

• Charles Lajoie

• Mark Sienkiewicz

• Perry Greenfield

13.2.3 Contributors via Astropy Affiliated Package Template

• Mike Droetboom

• Erik Bray

• Erik Tollerud

• Tom Robitaille

• Matt Craig

• Larry Bradley

• Kyle Barbary

• Christoph Deil

• Adam Ginsburg

• Wolfgang Kerzendorf

• Hans Moritz Gunther

• Benjamin Weaver

• Brigitta Sipocz

This work was supported in part by the JWST mission, a joint effort of NASA, ESA, and CSA, and by the WFIRST
Phase-A mission development project. STScI is operated on behalf of NASA by the Association of Universities for
Research in Astronomy.

166 Chapter 13. About POPPY

https://github.com/corcoted
https://github.com/kmdouglas
https://github.com/cslocum
https://github.com/mmechtley
https://github.com/sdwill
https://github.com/ivalaginja
https://github.com/astrofitz

poppy Documentation, Release 0.9.0

13.3 License

Copyright (C) 2010-2017 Association of Universities for Research in Astronomy (AURA)

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of AURA and its representatives may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY AURA “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AURA BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

13.3. License 167

poppy Documentation, Release 0.9.0

168 Chapter 13. About POPPY

CHAPTER 14

Appendix A: Optimizing Performance and Parallelization

Performance optimization on modern multi-core machines is a complex subject.

14.1 Know your Linear Algebra Library

The optical propagation calculations in POPPY are dominated by a small number of matrix algebra calls, primarily
np.dot with a side order of np.outer. numpy relies heavily on ATLAS (A Tuned LaPACK and BLAS library) to
perform its linear algebra calculations, but for reasons of portability many distributed copies of numpy do not have an
ATLAS that has been compiled with all the CPU optimization tricks turned on.

Whether or not numpy is linked against an optimized linear algebra library can make a huge difference in execution
speed, with speedups of an order of magnitude or more. You definitely want to make sure that your numpy is using
such a library:

• Apple’s Accelerate framework (a.k.a. vecLib) provides a highly tuned copy of BLAS and LAPACK on any
Mac, right out of the box.

• OpenBLAS is recommended on Linux.

• The Intel Math Kernel Library (MKL) Optimizations is available as an add-on from Continuum Analytics to
their Anaconda Python distribution. This requires a commercial license for a small fee.

Numpy is statically linked at compile time against a given copy of BLAS. Switching backends generally requires
recompiling numpy. (Note that if you use MacPorts on Mac OS to install numpy, it automatically uses Apple’s
Accelerate framework for you. Nice!)

Various stackoverflow, quora, and twitter posts suggest that OpenBLAS, MKL, and Accelerate all have very similar
performance, so as long as your numpy is using one of those three you should be in good shape.

14.2 Parallelized Calculations

POPPY can parallelize calculations in two different ways:

169

http://math-atlas.sourceforge.net
https://developer.apple.com/library/mac/documentation/Accelerate/Reference/AccelerateFWRef/index.html
http://www.openblas.net
https://store.continuum.io/cshop/mkl-optimizations/
http://stackoverflow.com/questions/5260068/multithreaded-blas-in-python-numpy
http://www.quora.com/Computational-Science-Scientific-Computing/How-does-the-performance-of-the-Intel-BLAS-and-LAPACK-libraries-compare-with-the-FOSS-alternatives
https://twitter.com/nedlom/status/437427557919891457

poppy Documentation, Release 0.9.0

1. Using Python’s built-in multiprocessing package to launch many additional Python processes, each of which
calculates a different wavelength.

2. Using the FFTW library for optimized accellerated Fourier transform calculations. FFTW is capable of sharing
load across multiple processes via multiple threads.

One might think that using both of these together would result in the fastest possible speeds. However, in testing
it appears that FFTW does not work reliably with multiprocessing for some unknown reason; this instability mani-
fests itself as occasional fatal crashes of the Python process. For this reason it is recommended that one use either
multiprocessing or FFTW, but not both.

For most users, the recommended choice is using multiprocessing.

FFTW only helps for FFT-based calculations, such as some coronagraphic or spectroscopic calculations. Calculations
that use only discrete matrix Fourier transforms are not helped by FFTW. Furthermore, baseline testing indicates
that in many cases, just running multiple Python processes is in fact significantly faster than using FFTW, even for
coronagraphic calculations using FFTs.

There is one slight tradeoff in using multiprocessing: When running in this mode, POPPY cannot display plots of the
calculation’s work in progress, for instance the intermediate optical planes. (This is because the background Python
processes can’t write to any Matplotlib display windows owned by the foreground process.) One can still retrieve the
intermediate optical planes after the multiprocess calculation is complete and examine them then; you just can’t see
plots displayed on screen as the calculation is proceeding. Of course, the calculation ought to proceed faster overall if
you’re using multiple processes!

Warning: On Mac OS X, for Python < 2.7, multiprocessing is not compatible with Apple’s Accelerate frame-
work mentioned above, due to the non-POSIX-compliant manner in which multiprocessing forks new processes.
See https://github.com/spacetelescope/poppy/issues/23 and https://github.com/numpy/numpy/issues/5752 for dis-
cussion. Python 3.4 provides an improved method of starting new processes that removes this limitation.

If you want to use multiprocessing with Apple’s Accelerate framework, you must upgrade to Python 3.4+.
POPPY will raise an exception if you try to start a multiprocess calculation and numpy is linked to Accelerate on
earlier versions of Python.

This is likely related to the intermittent crashes some users have reported with multiprocessing and FFTW; that
combination may also prove more stable on Python 3.4 but this has not been extensively tested yet.

The configuration options to enable multiprocessing live under poppy.conf, and use the Astropy configuration frame-
work. Enable them as follows:

>>> import poppy
>>> poppy.conf.use_multiprocessing = True
>>> poppy.conf.use_fftw = False

One caveat with running multiple processes is that the memory demands can become substantial for large oversampling
factors. For instance, a 1024-pixel-across pupil with oversampling=4 results in arrays that are 256 MB each. Several
such arrays are needed in memory per calculation, with peak memory utilization reaching ~ 1 GB per process for
oversampling=4 and over 4 GB per process for oversamping=8.

Thus, if running on a 16-core computer, ensure at least 32 GB of RAM are available before using one process per
core. If you are constrained by the amount of RAM available, you may experience better performance using fewer
processes than the number of processor cores in your computer.

By default, POPPY attempts to automatically choose a number of processes based on available CPUs and free memory
that will optimize computation speed without exhausting available RAM. This is implemented in the function poppy.
utils.estimate_optimal_nprocesses().

If desired, the number of processes can be explicitly specified:

170 Chapter 14. Appendix A: Optimizing Performance and Parallelization

https://github.com/spacetelescope/poppy/issues/23
https://github.com/numpy/numpy/issues/5752

poppy Documentation, Release 0.9.0

>>> poppy.conf.n_processes = 5

Set this to zero to enable automatic selection via the estimate_optimal_nprocesses() function.

14.3 Comparison of Different Parallelization Methods

The following figure shows the comparison of single-process, single-process with FFTW, and multi-process calcula-
tions on a relatively high end 16-core Mac Pro. The calculations were done with WebbPSF, a PSF simulator for JWST
that uses POPPY to perform computations.

The horizontal axis shows increasing detail of calculation via higher oversampling, while the vertical axis shows
computation time. Note the very different Y-axis scales for the two figures; coronagraphic calculations take much
longer than direct imaging!

Using multiple Python processes is the clear winner for most workloads. Explore the options to find what works best
for your particular calculations and computer setup.

14.3. Comparison of Different Parallelization Methods 171

poppy Documentation, Release 0.9.0

172 Chapter 14. Appendix A: Optimizing Performance and Parallelization

CHAPTER 15

Appendix B: Optimizing FFT Performance with FFTW

Optimizing numerical performance of FFTs is a complicated subject. Just using the FFTW library is no guarantee of
optimal performance; you need to know how to configure it.

Note: The following tests were performed using the older PyFFTW3 package, and have not yet been updated for the
newer pyFFTW package. However, performance considerations are expected to be fairly similar for both packages
since the underlying FFTW library is the same.

See discussion and test results at https://github.com/spacetelescope/webbpsf/issues/10

This is probably fairly sensitive to hardware details. The following benchmarks were performed on a Mac Pro, dual
quad-core 2.66 GHz Xeon, 12 GB RAM.

• Unlike many of the array operations in numpy, the fft operation is not threaded for execution across
multiple processors. It is thus slow and inefficient.

• Numpy and Scipy no longer include FFTW, but luckily there is an independently maintained pyfftw3
module. See https://launchpad.net/pyfftw/

• Using pyfftw3 can result in a 3-4x speedup for moderately large arrays. However, there are two
significant gotchas to be aware of:

1) the pyfftw3.Plan() function has a default parameter of nthreads=1. You have to explicitly tell it to use
multiple threads if you wish to reap the rewards of multiple processors. By default with nthreads=1
it is in fact a bit slower than numpy.fft!

2) The FFTW3 documentation asserts that greater speed can be achieved by using arrays which are
aligned in memory to 16-byte boundaries. There is a fftw3.create_aligned_array() function that cre-
ated numpy arrays which have this property. While I expected using this would make the transforms
faster, in fact I see significantly better performance when using unaligned arrays. (The speed differ-
ence becomes larger as array size increases, up to 2x!) This is unexpected and not understood, so it
may vary by machine and I suggest one ought to test this on different machines to see if it is reliable.

173

https://github.com/spacetelescope/webbpsf/issues/10
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
https://launchpad.net/pyfftw/

poppy Documentation, Release 0.9.0

15.1 Planning in FFTW3

• Performing plans can take a long time, especially if you select exhaustive or patient modes:

• The default option is ‘estimate’ which turns out to be really a poor choice.

• It appears that you can get most of the planning benefit from using the ‘measure’ option.

• Curiously, the really time-consuming planning only appears to take place if you do use aligned arrays. If you
use regular unaligned arrays, then a very abbreviated planning set is performed, and yet you still appear to reap
most of the benefits of

15.2 A comparison of different FFT methods

This test involves, in each iteration, allocating a new numpy array filled with random values, passing it to a function,
FFTing it, and then returning the result. Thus it is a fairly realistic test but takes longer per iteration than some of the
other tests presented below on this page. This is noted here in way of explanation for why there are discrepant values
for how long an optimized FFT of a given size takes.

Test results:

Doing complex FFT with array size = 1024 x 1024
for numpy fft, elapsed time is: 0.094331 s
for fftw3, elapsed time is: 0.073848 s
for fftw3 threaded, elapsed time is: 0.063143 s
for fftw3 thr noalign, elapsed time is: 0.020411 s
for fftw3 thr na inplace, elapsed time is: 0.017340 s

Doing complex FFT with array size = 2048 x 2048
for numpy fft, elapsed time is: 0.390593 s
for fftw3, elapsed time is: 0.304292 s
for fftw3 threaded, elapsed time is: 0.224193 s
for fftw3 thr noalign, elapsed time is: 0.061629 s
for fftw3 thr na inplace, elapsed time is: 0.047997 s

Doing complex FFT with array size = 4096 x 4096
for numpy fft, elapsed time is: 2.190670 s
for fftw3, elapsed time is: 1.911555 s
for fftw3 threaded, elapsed time is: 1.414653 s
for fftw3 thr noalign, elapsed time is: 0.332999 s
for fftw3 thr na inplace, elapsed time is: 0.293531 s

Conclusions: It appears that the most efficient algorithm is a non-aligned in-place FFT. Therefore, this is the algorithm
adopted into POPPY.

In this case, it makes sense that avoiding the alignment is beneficial, since it avoids a memory copy of the entire array
(from regular python unaligned into the special aligned array). Another set of tests (results not shown here) indicated
that there is no gain in performance from FFTing from an unaligned input array to an aligned output array.

15.3 A test comparing all four planning methods

This test involves creating one single input array (specifically, a large circle in the central half of the array) and then
repeatedly FFTing that same array. Thus it is pretty much the best possible case and the speeds are very fast.

174 Chapter 15. Appendix B: Optimizing FFT Performance with FFTW

poppy Documentation, Release 0.9.0

For arrays of size 512x512
Building input circular aperture

that took 0.024070 s
Plan method= estimate

Array alignment True False
Planning took 0.041177 0.005638 s
Executing took 0.017639 0.017181 s

Plan method= measure
Array alignment True False
Planning took 0.328468 0.006960 s
Executing took 0.001991 0.002741 s

Plan method= patient
Array alignment True False
Planning took 39.816985 0.020944 s
Executing took 0.002081 0.002475 s

Plan method= exhaustive
Array alignment True False
Planning took 478.421909 0.090302 s
Executing took 0.004974 0.002467 s

15.4 A comparison of ‘estimate’ and ‘measure’ for different sizes

This test involves creating one single input array (specifically, a large circle in the central half of the array) and then
repeatedly FFTing that same array. Thus it is pretty much the best possible case and the speeds are very fast.

For arrays of size 1024x1024
Building input circular aperture

that took 0.120378 s
Plan method= estimate

Array alignment True False
Planning took 0.006557 0.014652 s
Executing took 0.041282 0.041586 s

Plan method= measure
Array alignment True False
Planning took 1.434870 0.015797 s
Executing took 0.008814 0.011852 s

For arrays of size 2048x2048
Building input circular aperture

that took 0.469819 s
Plan method= estimate

Array alignment True False
Planning took 0.006753 0.032270 s
Executing took 0.098976 0.098925 s

Plan method= measure
Array alignment True False
Planning took 5.347839 0.033213 s
Executing took 0.028528 0.047729 s

For arrays of size 4096x4096
Building input circular aperture

that took 2.078152 s
Plan method= estimate

Array alignment True False
Planning took 0.007102 0.056571 s

(continues on next page)

15.4. A comparison of ‘estimate’ and ‘measure’ for different sizes 175

poppy Documentation, Release 0.9.0

(continued from previous page)

Executing took 0.395048 0.326832 s
Plan method= measure

Array alignment True False
Planning took 17.890278 0.057363 s
Executing took 0.126414 0.133602 s

For arrays of size 8192x8192
Building input circular aperture

that took 93.043509 s
Plan method= estimate

Array alignment True False
Planning took 0.245359 0.425931 s
Executing took 2.800093 1.426851 s

Plan method= measure
Array alignment True False
Planning took 41.203768 0.235688 s
Executing took 0.599916 0.526022 s

15.5 Caching of plans means that irunning the same script a second
time is much faster

Immediately after executing the above, I ran the same script again. Now the planning times all become essentially
negligible.

Oddly, the exection time for the largest array gets longer. I suspect this has something to do with memory or system
load.

For arrays of size 1024x1024
Building input circular aperture

that took 0.115704 s
Plan method= estimate

Array alignment True False
Planning took 0.005147 0.015813 s
Executing took 0.006883 0.011428 s

Plan method= measure
Array alignment True False
Planning took 0.009078 0.012562 s
Executing took 0.007057 0.010706 s

For arrays of size 2048x2048
Building input circular aperture

that took 0.421966 s
Plan method= estimate

Array alignment True False
Planning took 0.004888 0.032564 s
Executing took 0.026869 0.043273 s

Plan method= measure
Array alignment True False
Planning took 0.019813 0.032273 s
Executing took 0.027532 0.045452 s

For arrays of size 4096x4096
Building input circular aperture

that took 1.938918 s
(continues on next page)

176 Chapter 15. Appendix B: Optimizing FFT Performance with FFTW

poppy Documentation, Release 0.9.0

(continued from previous page)

Plan method= estimate
Array alignment True False
Planning took 0.005327 0.057813 s
Executing took 0.123481 0.131502 s

Plan method= measure
Array alignment True False
Planning took 0.030474 0.057851 s
Executing took 0.119786 0.134453 s

For arrays of size 8192x8192
Building input circular aperture

that took 78.352433 s
Plan method= estimate

Array alignment True False
Planning took 0.020330 0.325254 s
Executing took 0.593469 0.530125 s

Plan method= measure
Array alignment True False
Planning took 0.147264 0.227571 s
Executing took 4.640368 0.528359 s

15.6 The Payoff: Speed improvements in POPPY

For a monochromatic propagation through a 1024x1024 pupil, using 4x oversampling, using FFTW results in about a
3x increase in performance.

Using FFTW: FFT time elapsed: 0.838939 s
Using Numpy.fft: FFT time elapsed: 3.010586 s

This leads to substantial savings in total computation time:

Using FFTW: TIME 1.218268 s for propagating one wavelength
Using Numpy.fft: TIME 3.396681 s for propagating one wavelength

Users are encouraged to try different approaches to optimizing performance on their own machines. To enable some
rudimentary benchmarking for the FFT section of the code, set poppy.conf.enable_speed_tests=True and config-
ure your logging display to show debug messages. (i.e. webbpsf.configure_logging('debug')). Measured times
will be printed in the log stream, for instance like so:

poppy : INFO Calculating PSF with 1 wavelengths
poppy : INFO Propagating wavelength = 1e-06 meters with weight=1.00
poppy : DEBUG Creating input wavefront with wavelength=0.000001, npix=511, pixel scale=0.007828␣
→˓meters/pixel
poppy : DEBUG Wavefront and optic Optic from fits.HDUList object already at same plane type,␣
→˓no propagation needed.
poppy : DEBUG Multiplied WF by phasor for Pupil plane: Optic from fits.HDUList object
poppy : DEBUG normalizing at first plane (entrance pupil) to 1.0 total intensity
poppy : DEBUG Propagating wavefront to Image plane: -empty- (Analytic).
poppy : DEBUG conf.use_fftw is True
poppy : INFO using numpy FFT of (511, 511) array
poppy : DEBUG using numpy FFT of (511, 511) array, direction=forward
poppy : DEBUG TIME 0.051085 s for the FFT # This line
poppy : DEBUG Multiplied WF by phasor for Image plane: -empty- (Analytic)
poppy : DEBUG TIME 0.063745 s for propagating one wavelength # and this one

(continues on next page)

15.6. The Payoff: Speed improvements in POPPY 177

poppy Documentation, Release 0.9.0

(continued from previous page)

poppy : INFO Calculation completed in 0.082 s
poppy : INFO PSF Calculation completed.

178 Chapter 15. Appendix B: Optimizing FFT Performance with FFTW

Part III

Getting Help

179

poppy Documentation, Release 0.9.0

POPPY is developed and maintained by Marshall Perrin and collaborators. Questions, comments, and pull requests
always welcome, either via the Github repository or email to help@stsci.edu.

181

https://github.com/spacetelescope/poppy
mailto:help@stsci.edu

poppy Documentation, Release 0.9.0

182

Python Module Index

p
poppy, 99
poppy.zernike, 153

183

poppy Documentation, Release 0.9.0

184 Python Module Index

Index

Symbols
__call__() (poppy.zernike.Segment_PTT_Basis

method), 162
__call__() (poppy.zernike.Segment_Piston_Basis

method), 161

A
add_detector() (poppy.FresnelOpticalSystem method),

148
add_image() (poppy.OpticalSystem method), 115
add_optic() (poppy.FresnelOpticalSystem method), 148
add_pupil() (poppy.OpticalSystem method), 115
allowable_kinds (poppy.BandLimitedCoronagraph at-

tribute), 128
AnalyticOpticalElement (class in poppy), 123
angular_coordinates (poppy.FresnelWavefront at-

tribute), 144
AnnularFieldStop (class in poppy), 131
aperture() (poppy.zernike.Segment_PTT_Basis

method), 162
apply_lens_power() (poppy.FresnelWavefront method),

144
arbitrary_basis() (in module poppy.zernike), 160
ArrayOpticalElement (class in poppy), 120
AsymmetricSecondaryObscuration (class in poppy),

138

B
BandLimitedCoron (in module poppy), 128
BandLimitedCoronagraph (class in poppy), 128
BarOcculter (class in poppy), 132

C
cached_zernike1 (poppy.zernike attribute), 155
calc_datacube() (poppy.Instrument method), 111
calc_psf() (poppy.Instrument method), 111
CircularAperture (class in poppy), 133
CircularOcculter (class in poppy), 132
CircularPhaseMask (class in poppy), 129

CompoundAnalyticOptic (class in poppy), 141
CompoundOpticalSystem (class in poppy), 117
coordinates() (poppy.FresnelWavefront method), 145
coordinates() (poppy.Wavefront method), 113

D
describe() (poppy.FresnelOpticalSystem method), 148
describe() (poppy.OpticalSystem method), 116
Detector (class in poppy), 123
diameter (poppy.HexagonAperture attribute), 135
diameter (poppy.HexagonFieldStop attribute), 132
display() (poppy.FresnelWavefront method), 145
display() (poppy.Instrument method), 112
display() (poppy.InverseTransmission method), 127
display() (poppy.OpticalElement method), 119
display_ee() (in module poppy), 102
display_profiles() (in module poppy), 104
display_psf() (in module poppy), 100
display_psf_difference() (in module poppy), 101
divergence (poppy.FresnelWavefront attribute), 144

F
filter (poppy.Instrument attribute), 110
filter_list (poppy.Instrument attribute), 110
FITSOpticalElement (class in poppy), 120
fixed_sampling_optic() (in module poppy), 107
flat_to_flat (poppy.HexagonAperture attribute), 135
flat_to_flat (poppy.HexagonFieldStop attribute), 132
fov (poppy.FresnelWavefront attribute), 144
FQPM_FFT_aligner (class in poppy), 133
FresnelOpticalSystem (class in poppy), 147
FresnelWavefront (class in poppy), 143
from_fresnel_wavefront() (poppy.Wavefront class

method), 113
from_wavefront() (poppy.FresnelWavefront class

method), 146
fwhm (poppy.GaussianAperture attribute), 140

G
GaussianAperture (class in poppy), 139

185

poppy Documentation, Release 0.9.0

get_coordinates() (poppy.AnalyticOpticalElement
method), 124

get_opd() (poppy.AnalyticOpticalElement method), 125
get_opd() (poppy.CircularPhaseMask method), 130
get_opd() (poppy.CompoundAnalyticOptic method),

141
get_opd() (poppy.FITSOpticalElement method), 122
get_opd() (poppy.FQPM_FFT_aligner method), 133
get_opd() (poppy.IdealFQPM method), 129
get_opd() (poppy.InverseTransmission method), 127
get_opd() (poppy.OpticalElement method), 119
get_opd() (poppy.ParameterizedWFE method), 150
get_opd() (poppy.QuadPhase method), 142
get_opd() (poppy.SineWaveWFE method), 151
get_opd() (poppy.StatisticalPSDWFE method), 152
get_opd() (poppy.ThinLens method), 139
get_opd() (poppy.WavefrontError method), 149
get_opd() (poppy.ZernikeWFE method), 151
get_optical_system() (poppy.Instrument method), 112
get_phasor() (poppy.AnalyticOpticalElement method),

125
get_phasor() (poppy.OpticalElement method), 120
get_transmission() (poppy.AnalyticOpticalElement

method), 125
get_transmission() (poppy.AnnularFieldStop

method), 131
get_transmission() (poppy.AsymmetricSecondaryObscuration

method), 139
get_transmission() (poppy.BandLimitedCoronagraph

method), 128
get_transmission() (poppy.BarOcculter method), 133
get_transmission() (poppy.CircularAperture method),

134
get_transmission() (poppy.CompoundAnalyticOptic

method), 142
get_transmission() (poppy.GaussianAperture

method), 140
get_transmission() (poppy.HexagonAperture

method), 135
get_transmission() (poppy.HexagonFieldStop

method), 132
get_transmission() (poppy.InverseTransmission

method), 127
get_transmission() (poppy.KnifeEdge method), 141
get_transmission() (poppy.MultiHexagonAperture

method), 136
get_transmission() (poppy.NgonAperture method),

136
get_transmission() (poppy.OpticalElement method),

120
get_transmission() (poppy.RectangleAperture

method), 137
get_transmission() (poppy.RectangularFieldStop

method), 130

get_transmission() (poppy.ScalarTransmission
method), 126

get_transmission() (poppy.SecondaryObscuration
method), 138

get_transmission() (poppy.ZernikeWFE method), 151

H
hex_aperture() (in module poppy.zernike), 155
HexagonAperture (class in poppy), 134
HexagonFieldStop (class in poppy), 131
hexike_basis() (in module poppy.zernike), 155

I
IdealFQPM (class in poppy), 129
image_coordinates() (poppy.Wavefront static method),

114
input_wavefront() (poppy.CompoundOpticalSystem

method), 117
input_wavefront() (poppy.FresnelOpticalSystem

method), 148
input_wavefront() (poppy.OpticalSystem method), 116
Instrument (class in poppy), 109
InverseTransmission (class in poppy), 126

K
KnifeEdge (class in poppy), 140

M
measure_anisotropy() (in module poppy), 106
measure_centroid() (in module poppy), 106
measure_ee() (in module poppy), 102
measure_fwhm() (in module poppy), 105
measure_radial() (in module poppy), 105
measure_radius_at_ee() (in module poppy), 103
measure_sharpness() (in module poppy), 106
measure_strehl() (in module poppy), 106
MultiHexagonAperture (class in poppy), 135

N
name (poppy.Instrument attribute), 110
NgonAperture (class in poppy), 136
noll_indices() (in module poppy.zernike), 156

O
opd_expand() (in module poppy.zernike), 156
opd_expand_nonorthonormal() (in module

poppy.zernike), 157
opd_expand_segments() (in module poppy.zernike), 157
opd_from_zernikes() (in module poppy.zernike), 158
OpticalElement (class in poppy), 118
OpticalSystem (class in poppy), 114
options (poppy.Instrument attribute), 110

186 Index

poppy Documentation, Release 0.9.0

P
param_str (poppy.FresnelWavefront attribute), 144
ParameterizedWFE (class in poppy), 149
peaktovalley() (poppy.WavefrontError method), 149
pixelscale (poppy.FresnelWavefront attribute), 144
pixelscale (poppy.Instrument attribute), 111
planar_range() (poppy.FresnelWavefront method), 146
planes (poppy.CompoundOpticalSystem attribute), 117
poppy (module), 99
poppy.zernike (module), 153
propagate() (poppy.CompoundOpticalSystem method),

117
propagate() (poppy.FresnelOpticalSystem method), 149
propagate() (poppy.OpticalSystem method), 116
propagate_direct() (poppy.FresnelWavefront method),

146
propagate_fresnel() (poppy.FresnelWavefront

method), 146
propagate_to() (poppy.FresnelWavefront method), 146
propagate_to() (poppy.Wavefront method), 114
pupil (poppy.Instrument attribute), 111
pupil_coordinates() (poppy.FresnelWavefront static

method), 147
pupil_coordinates() (poppy.Wavefront static method),

114
pupil_diam (poppy.FITSOpticalElement attribute), 122
pupilopd (poppy.Instrument attribute), 111

Q
QuadPhase (class in poppy), 142
QuadraticLens (class in poppy), 142

R
R() (in module poppy.zernike), 154
r_c() (poppy.FresnelWavefront method), 147
radial_profile() (in module poppy), 104
RectangleAperture (class in poppy), 136
RectangularFieldStop (class in poppy), 130
rms() (poppy.WavefrontError method), 149
Rotation (class in poppy), 122

S
sample() (poppy.AnalyticOpticalElement method), 125
ScalarTransmission (class in poppy), 126
SecondaryObscuration (class in poppy), 137
Segment_Piston_Basis (class in poppy.zernike), 161
Segment_PTT_Basis (class in poppy.zernike), 162
shape (poppy.AnalyticOpticalElement attribute), 124
shape (poppy.Detector attribute), 123
shape (poppy.InverseTransmission attribute), 127
shape (poppy.OpticalElement attribute), 119
SineWaveWFE (class in poppy), 151
size (poppy.SquareAperture attribute), 137

specFromSpectralType() (in module poppy), 107
spot_radius() (poppy.FresnelWavefront method), 147
SquareAperture (class in poppy), 137
SquareFieldStop (class in poppy), 130
StatisticalPSDWFE (class in poppy), 151
str_zernike() (in module poppy.zernike), 158

T
ThinLens (class in poppy), 139
to_fits() (poppy.AnalyticOpticalElement method), 125

W
waists (poppy.FresnelWavefront attribute), 144
Wavefront (class in poppy), 112
WavefrontError (class in poppy), 149

Z
z_r (poppy.FresnelWavefront attribute), 144
zern_name() (in module poppy.zernike), 159
zernike() (in module poppy.zernike), 159
zernike1() (in module poppy.zernike), 159
zernike_basis() (in module poppy.zernike), 160
ZernikeWFE (class in poppy), 150

Index 187

	I Summary
	II Contents
	III Getting Help

